Milutin Obradović Department of Mathematics, Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000, Belgrade, Serbia

Search for other papers by Milutin Obradović in
Current site
Google Scholar
Nikola Tuneski Department of Mathematics and Informatics, Faculty of Mechanical Engineering, Ss. Cyril and Methodius University in Skopje, Karpoš II b.b., 1000 Skopje, Republic of North Macedonia

Search for other papers by Nikola Tuneski in
Current site
Google Scholar
Open access

Let ƒ be analytic in the unit disk B and normalized so that ƒ (z) = z + a2z2 + a3z3 +܁܁܁. In this paper, we give upper bounds of the Hankel determinant of second order for the classes of starlike functions of order α, Ozaki close-to-convex functions and two other classes of analytic functions. Some of the estimates are sharp.

  • [1]

    Bello, R., and Opoola, T. Upper bounds for fekete-szego functions and the second hankel determinant for a class of starlike functions. IOSR Journal of Mathematics 12, 2 (2017), 3439.

    • Search Google Scholar
    • Export Citation
  • [2]

    Duren, P. L. Univalent functions, vol. 259 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1983.

    • Search Google Scholar
    • Export Citation
  • [3]

    Kargar, R., and Ebadian, A. Ozaki’s conditions for general integral operator. Sahand Communications in Mathematical Analysis 5, 1 (2017), 6167.

    • Search Google Scholar
    • Export Citation
  • [4]

    Nunokawa, M., Saitoh, H., Ikeda, A., Koike, N., and Ota, Y. On certain starlike functions. No. 963. 1996, pp. 74–77. Univalent functions and the Briot-Bouquet differential equations (Japanese) (Kyoto, 1996).

    • Search Google Scholar
    • Export Citation
  • [5]

    Obradovich, M., Ponnusami, S., and Virts, K.-u. Characteristics of the coefficients and partial sums of some univalent functions. Sibirsk. Mat. Zh. 54, 4 (2013), 852870.

    • Search Google Scholar
    • Export Citation
  • [6]

    Ozaki, S. On the theory of multivalent functions. II. Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 4 (1941), 4587.

  • [7]

    Prokhorov, D. V., and Szynal, J. Inverse coefficients for (a, β)-convex functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125143 (1984).

    • Search Google Scholar
    • Export Citation
  • [8]

    Sakaguchi, K. A property of convex functions and an application to criteria for univalence. Bull. Nara Univ. Ed. Natur. Sci. 22, 2 (1973), 15.

    • Search Google Scholar
    • Export Citation
  • [9]

    Singh, R., and Singh, S. Some sufficient conditions for univalence and starlikeness. Colloq. Math. 47, 2 (1982), 309314 (1983).

  • [10]

    Sokól, J., and Thomas, D. K. The second Hankel determinant for alpha-convex functions. Lith. Math. J. 58, 2 (2018), 212218.

  • [11]

    Thomas, D. K., Tuneski, N., and Vasudevarao, A. Univalent functions, vol. 69 of De Gruyter Studies in Mathematics. De Gruyter, Berlin, 2018. A primer.

    • Search Google Scholar
    • Export Citation
  • [12]

    Umezawa, T. Analytic functions convex in one direction. J. Math. Soc. Japan 4 (1952), 194202.

  • Collapse
  • Expand
The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • † István GYŐRI (University of Pannonia, Veszprém, Hungary)
  • János PINTZ (Rényi Institute of Mathematics, Budapest, Hungary)
  • Ferenc SCHIPP (Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary)
  • Sándor SZABÓ (University of Pécs, Pécs, Hungary)

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz, Linz, Austria)
  • Ferenc HARTUNG (University of Pannonia, Veszprém, Hungary)
  • Ferenc WEISZ (Eötvös Loránd University, Budapest, Hungary)

Editorial Board

  • Attila BÉRCZES (University of Debrecen, Debrecen, Hungary)
  • István BERKES (Rényi Institute of Mathematics, Budapest, Hungary)
  • Károly BEZDEK (University of Calgary, Calgary, Canada)
  • György DÓSA (University of Pannonia, Veszprém, Hungary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs, Pécs, Hungary)
  • Vedran KRCADINAC (University of Zagreb, Zagreb, Croatia) 
  • Željka MILIN ŠIPUŠ (University of Zagreb, Zagreb, Croatia)
  • Gábor NYUL (University of Debrecen, Debrecen, Hungary)
  • Margit PAP (University of Pécs, Pécs, Hungary)
  • István PINK (University of Debrecen, Debrecen, Hungary)
  • Mihály PITUK (University of Pannonia, Veszprém, Hungary)
  • Jörg THUSWALDNER (Montanuniversität Leoben, Leoben, Austria)
  • Zsolt TUZA (University of Pannonia, Veszprém, Hungary)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics, Budapest, Hungary)  - Chair
  • Gabriella BÖHM
  • György GÁT (University of Debrecen, Debrecen, Hungary)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)