View More View Less
  • 1 Department of Mathematics, Faculty of Civil Engineering, University of Belgrade, , Bulevar Kralja Aleksandra 73, 11000, Belgrade, , Serbia
  • | 2 Department of Mathematics and Informatics, Faculty of Mechanical Engineering, Ss. Cyril and Methodius University in Skopje, , Karpoš II b.b., 1000 Skopje, Republic of North Macedonia
Open access

Let ƒ be analytic in the unit disk B and normalized so that ƒ (z) = z + a2z2 + a3z3 +܁܁܁. In this paper, we give upper bounds of the Hankel determinant of second order for the classes of starlike functions of order α, Ozaki close-to-convex functions and two other classes of analytic functions. Some of the estimates are sharp.

  • [1]

    Bello, R., and Opoola, T. Upper bounds for fekete-szego functions and the second hankel determinant for a class of starlike functions. IOSR Journal of Mathematics 12, 2 (2017), 3439.

    • Search Google Scholar
    • Export Citation
  • [2]

    Duren, P. L. Univalent functions, vol. 259 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1983.

    • Search Google Scholar
    • Export Citation
  • [3]

    Kargar, R., and Ebadian, A. Ozaki’s conditions for general integral operator. Sahand Communications in Mathematical Analysis 5, 1 (2017), 6167.

    • Search Google Scholar
    • Export Citation
  • [4]

    Nunokawa, M., Saitoh, H., Ikeda, A., Koike, N., and Ota, Y. On certain starlike functions. No. 963. 1996, pp. 74–77. Univalent functions and the Briot-Bouquet differential equations (Japanese) (Kyoto, 1996).

    • Search Google Scholar
    • Export Citation
  • [5]

    Obradovich, M., Ponnusami, S., and Virts, K.-u. Characteristics of the coefficients and partial sums of some univalent functions. Sibirsk. Mat. Zh. 54, 4 (2013), 852870.

    • Search Google Scholar
    • Export Citation
  • [6]

    Ozaki, S. On the theory of multivalent functions. II. Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 4 (1941), 4587.

  • [7]

    Prokhorov, D. V., and Szynal, J. Inverse coefficients for (a, β)-convex functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125143 (1984).

    • Search Google Scholar
    • Export Citation
  • [8]

    Sakaguchi, K. A property of convex functions and an application to criteria for univalence. Bull. Nara Univ. Ed. Natur. Sci. 22, 2 (1973), 15.

    • Search Google Scholar
    • Export Citation
  • [9]

    Singh, R., and Singh, S. Some sufficient conditions for univalence and starlikeness. Colloq. Math. 47, 2 (1982), 309314 (1983).

  • [10]

    Sokól, J., and Thomas, D. K. The second Hankel determinant for alpha-convex functions. Lith. Math. J. 58, 2 (2018), 212218.

  • [11]

    Thomas, D. K., Tuneski, N., and Vasudevarao, A. Univalent functions, vol. 69 of De Gruyter Studies in Mathematics. De Gruyter, Berlin, 2018. A primer.

    • Search Google Scholar
    • Export Citation
  • [12]

    Umezawa, T. Analytic functions convex in one direction. J. Math. Soc. Japan 4 (1952), 194202.

The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Publication
Programme
2021 Volume 27 /N.S. 1/
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)