Let ƒ be analytic in the unit disk B and normalized so that ƒ (z) = z + a2z2 + a3z3 +܁܁܁. In this paper, we give upper bounds of the Hankel determinant of second order for the classes of starlike functions of order α, Ozaki close-to-convex functions and two other classes of analytic functions. Some of the estimates are sharp.
Bello, R., and Opoola, T. Upper bounds for fekete-szego functions and the second hankel determinant for a class of starlike functions. IOSR Journal of Mathematics 12, 2 (2017), 34–39.
Duren, P. L. Univalent functions, vol. 259 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1983.
Kargar, R., and Ebadian, A. Ozaki’s conditions for general integral operator. Sahand Communications in Mathematical Analysis 5, 1 (2017), 61–67.
Nunokawa, M., Saitoh, H., Ikeda, A., Koike, N., and Ota, Y. On certain starlike functions. No. 963. 1996, pp. 74–77. Univalent functions and the Briot-Bouquet differential equations (Japanese) (Kyoto, 1996).
Obradovich, M., Ponnusami, S., and Virts, K.-u. Characteristics of the coefficients and partial sums of some univalent functions. Sibirsk. Mat. Zh. 54, 4 (2013), 852–870.
Ozaki, S. On the theory of multivalent functions. II. Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 4 (1941), 45–87.
Prokhorov, D. V., and Szynal, J. Inverse coefficients for (a, β)-convex functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125–143 (1984).
Sakaguchi, K. A property of convex functions and an application to criteria for univalence. Bull. Nara Univ. Ed. Natur. Sci. 22, 2 (1973), 1–5.
Singh, R., and Singh, S. Some sufficient conditions for univalence and starlikeness. Colloq. Math. 47, 2 (1982), 309–314 (1983).
Sokól, J., and Thomas, D. K. The second Hankel determinant for alpha-convex functions. Lith. Math. J. 58, 2 (2018), 212–218.
Thomas, D. K., Tuneski, N., and Vasudevarao, A. Univalent functions, vol. 69 of De Gruyter Studies in Mathematics. De Gruyter, Berlin, 2018. A primer.
Umezawa, T. Analytic functions convex in one direction. J. Math. Soc. Japan 4 (1952), 194–202.