Author:
Jonathan David Farley Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, United States of America

Search for other papers by Jonathan David Farley in
Current site
Google Scholar
PubMed
Close
Open access

Let k ≥ 1. A Sperner k-family is a maximum-sized subset of a finite poset that contains no chain with k + 1 elements. In 1976 Greene and Kleitman defined a lattice-ordering on the set Sk(P) of Sperner k-families of a fifinite poset P and posed the problem: “Characterize and interpret the join- and meet-irreducible elements of Sk(P),” adding, “This has apparently not been done even for the case k = 1.”

In this article, the case k = 1 is done.

  • [1]

    Davey, B. A. and Priestley, H. A. Introduction to Lattices and Order. Cambridge University Press, Cambridge, 2002. Second edition.

  • [2]

    Dilworth, R. P. A decomposition theorem for partially ordered sets. Annals of Mathematics 51 (1950), 161166.

  • [3]

    Dilworth, R. P. Some combinatorial problems on partially ordered sets. In Proceedings of Symposia in Applied Mathematics (Providence, Rhode Island, 1960), vol. 10., American Mathematical Society, pages. 8590.

    • Search Google Scholar
    • Export Citation
  • [4]

    Freese, R. An application of Dilworth’s lattice of maximal antichains. Discrete Mathematics 7 (1974), 107109.

  • [5]

    Freese, R., Jezcaronek, J. and Nation, J. B. Free Lattices. American Mathematical Society, Providence, Rhode Island, 1995.

  • [6]

    Greene, C. and Kleitman, D. J. The structure of Sperner k-families. Journal of Combinatorial Theory (A) 20 (1976), 4168.

  • [7]

    Hall, P. On representatives of subsets. Journal of the London Mathematical Society 10 (1935), 2630.

  • [8]

    Koh, K. M. On the lattice of maximum-sized antichains of a finite poset. Algebra Universalis, 17 (1983), 7386.

  • [9]

    Wikipedia. Strongly connected component. (December 26, 2015). Retrieved from https://en.wikipedia.org/wiki/Strongly_connected_component.

    • Search Google Scholar
    • Export Citation
  • [10]

    Wild, M. Letters to author, December 3 and 10, 2015.

  • Collapse
  • Expand
The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • † István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)