Generalizing results of Schatte [11] and Atlagh and Weber [2], in this paper we give conditions for a sequence of random variables to satisfy the almost sure central limit theorem along a given sequence of integers.
Atlagh, M. Théorème central limite presque sûr et loi du logarithme itéré pour des sommes de variables aléatoires indépendantes. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 929–933.
Atlagh, M., and Weber, M. Un théorème central limite presque sûr relatif à des sous-suites. C. R. Acad. Sci. Paris Sér. I 315 (1992), 203–206.
Berkes, I., and Dehling, H. Some limit theorems in log density, Ann. Probab. 21 (1993), 1640–1670.
Bingham, N. H., and Rogers, L. C. G. Summability methods and almost sure convergence. In: Bellow, A., Jones, R., editors, Almost Everywhere Convergence II, Academic Press, New York, 1991, pages 69–83.
Chandrasekharan, K., and Minakshisundaram, S. Typical Means. Oxford University Press, Oxford, 1952.
Dudley, R. M. Probabilities and metrics. Lecture Notes Series 45, Aarhus Universitet, 1976.
Ibragimov, I. A., and Lifshits, M. A. On limit theorems of “almost sure” type. (Russian) Teor. Veroyatnost. i Primenen. 44 (1999), 328–350; translation in Theory Probab. Appl. 44 (2000), 254–272.
Lifshits, M. The almost sure limit theorem for sums of random vectors, J. Math. Sciences 109 (2002), 2166–2178.
Major, P. Almost sure functional limit theorems. I. The general case. Studia Sci. Math. Hungar. 34 (1998), 273–304.
Major, P. Almost sure functional limit theorems. II. The case of independent random variables. Studia Sci. Math. Hungar. 36 (2000), 231–273.
Schatte, P. On strong versions of the central limit theorem. Math. Nachr. 137 (1988), 249–256.