View More View Less
  • 1 Alfréd Rényi Institute of Mathematics, Budapest, Hungary
Open access

Generalizing results of Schatte [11] and Atlagh and Weber [2], in this paper we give conditions for a sequence of random variables to satisfy the almost sure central limit theorem along a given sequence of integers.

  • [1]

    Atlagh, M. Théorème central limite presque sûr et loi du logarithme itéré pour des sommes de variables aléatoires indépendantes. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 929933.

    • Search Google Scholar
    • Export Citation
  • [2]

    Atlagh, M., and Weber, M. Un théorème central limite presque sûr relatif à des sous-suites. C. R. Acad. Sci. Paris Sér. I 315 (1992), 203206.

    • Search Google Scholar
    • Export Citation
  • [3]

    Berkes, I., and Dehling, H. Some limit theorems in log density, Ann. Probab. 21 (1993), 16401670.

  • [4]

    Bingham, N. H., and Rogers, L. C. G. Summability methods and almost sure convergence. In: Bellow, A., Jones, R., editors, Almost Everywhere Convergence II, Academic Press, New York, 1991, pages 6983.

    • Search Google Scholar
    • Export Citation
  • [5]

    Chandrasekharan, K., and Minakshisundaram, S. Typical Means. Oxford University Press, Oxford, 1952.

  • [6]

    Dudley, R. M. Probabilities and metrics. Lecture Notes Series 45, Aarhus Universitet, 1976.

  • [7]

    Ibragimov, I. A., and Lifshits, M. A. On limit theorems of “almost sure” type. (Russian) Teor. Veroyatnost. i Primenen. 44 (1999), 328350; translation in Theory Probab. Appl. 44 (2000), 254272.

    • Search Google Scholar
    • Export Citation
  • [8]

    Lifshits, M. The almost sure limit theorem for sums of random vectors, J. Math. Sciences 109 (2002), 21662178.

  • [9]

    Major, P. Almost sure functional limit theorems. I. The general case. Studia Sci. Math. Hungar. 34 (1998), 273304.

  • [10]

    Major, P. Almost sure functional limit theorems. II. The case of independent random variables. Studia Sci. Math. Hungar. 36 (2000), 231273.

    • Search Google Scholar
    • Export Citation
  • [11]

    Schatte, P. On strong versions of the central limit theorem. Math. Nachr. 137 (1988), 249256.

The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • † István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)