We prove the weak consistency of the trimmed least square estimator of the covariance parameter of an AR(1) process with stable errors.
Bazarova, A., Berkes, I., and Horváth, L. Trimmed stable autoregressive processes. Stoch. Proc. Appl. 124 (2014), 3441–3462.
Berkes, I., Horváth, L., Ling, S., and Schauer, J. Testing for structural change of AR model to threshold AR model. J. Time Series Analysis 32 (2011), 547–565.
Berkes, I., Horváth, L., and Schauer, J. Asymptotics of trimmed CUSUM statistics. Bernoulli 17 (2011), 1344–1367.
Billingsley, P. Convergence of probability measures. Wiley, 1968.
Bingham, N. H., Goldie, C. M., and Teugels, J. L. Regular variation. Cambridge University Press, 1987.
Cline, D. Estimations and Linear Prediction for Regression, Autoregression and ARMA with In_nite Variance Data. PhD Thesis, Colorado State University, Fort Collins, 1983.
Csörgő, S., Horváth, L., and Mason, D. M. What portion of the sample makes a partial sum asymptotically stable or normal? Probability Theory and Related Fields 72 (1986), 1–16.
Davydov, Y. Weak convergence of discontinuous processes to continuous ones. In: Probability theory and mathematical statistics. Amsterdam: Gordon and Breach 1996, pages 15–18.
Withers, C. S. Conditions for linear processes to be strong mixing. Z. Wahrsch. verw. Gebiete 57 (1981), 477–480.