Authors:
Zoltán Boros Institute of Mathematics, University of Debrecen, Pf. 400, 4002 Debrecen, Hungary

Search for other papers by Zoltán Boros in
Current site
Google Scholar
PubMed
Close
and
Péter Tóth Institute of Mathematics, University of Debrecen, Pf. 400, 4002 Debrecen, Hungary

Search for other papers by Péter Tóth in
Current site
Google Scholar
PubMed
Close
Open access

The ultrapower T* of an arbitrary ordered set T is introduced as an infinitesimal extension of T. It is obtained as the set of equivalence classes of the sequences in T, where the corresponding relation is generated by a free ultrafilter on the set of natural numbers. It is established that T* always satisfies Cantor’s property, while one can give the necessary and sufficient conditions for T so that T* would be complete or it would fulfill the open completeness property, respectively. Namely, the density of the original set determines the open completeness of the extension, while independently, the completeness of T* is determined by the cardinality of T.

  • [1]

    Boros, Z., and Száz, A. Infimum and supremum completeness properties of ordered sets without axioms. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 16, 2 (2008), 3137.

    • Search Google Scholar
    • Export Citation
  • [2]

    Corazza, P. Revisiting the construction of the real line. International Mathematical Forum 11, 2 (2016), 7194. .

  • [3]

    Jech, T. Set Theory. Springer-Verlag, Berlin – Heidelberg, 2003.

  • [4]

    Łoś, J. On the extending of models i. Fundamenta Mathematicae 42 (1955), 3854.

  • [5]

    Luxemburg, W. A. What is nonstandard analysis? Amer. Math. Monthly 80, 6 (1973), 3867.

  • [6]

    Newman, D. J., and Parsons, T. D. On monotone subsequences. Amer. Math. Monthly 95, 1 (1988), 4445.

  • [7]

    Stroyan, K. D., and Luxemburg, W. A. J. Introduction to the theory of infinitesimals. Academic Press, New York – San Francisco – London, 1976.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
  • Top
The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • † István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2022 0 0 0
Mar 2022 0 0 0
Apr 2022 0 14 12
May 2022 0 34 22
Jun 2022 0 21 9
Jul 2022 0 54 6
Aug 2022 0 88 0