We treat a variation of graph domination which involves a partition (V 1, V 2,..., Vk) of the vertex set of a graph G and domination of each partition class V i over distance d where all vertices and edges of G may be used in the domination process. Strict upper bounds and extremal graphs are presented; the results are collected in three handy tables. Further, we compare a high number of partition classes and the number of dominators needed.
Alon, N. and Spencer, J. H. The Probabilistic Method. John Wiley and Sons, Inc., 1992.
Arnautov, V. I. Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices. Prikl. Mat. i Programmirovanie 11 (1974), 3-8. (in Russian)
Bujtás, Cs. Domination number of graphs with minimum degree five. Discuss. Math. Graph Theory 41 (2021), 763-777.
Caro, Y. and Roditty, Y. On the vertex-independence number and star decomposition of graphs. Ars Combin. 20 (1985), 167-180.
Caro, Y. and Roditty, Y. A note on the k-domination number of a graph. Internat. J. Math. Sci. 13 (1990), 205-206.
Chartrand, G. and Leśniak, L. Graphs and Digraphs. Third Edition, Chapman &Hall, London, 1996.
Fink, J. F., Jacobson, M. S., Kinch, L. F. and Roberts, J. On graphs having domination number half their order. Period. Math. Hungar. 16 (1985), 287-293.
Frendrup, A., Tuza, Zs. and Vestergaard, P. D. Distance domination and vertex partitions. In Proc. Pannonian Conference on Advances in Information Technology, PCIT 2019, Vassányi, Ed. University of Pannonia, Veszprém, 2019, pp. 16-22. https://pcit2019.mik.uni-pannon.hu/images/program/PCIT_2019_Proceedings_NV.pdf
Fu, C-M. K. and Vestergaard, P. D. Distance domination in partitioned graphs. Congr. Numer. 182 (2006), 155-159.
Hartnell, B. L. and Vestergaard, P. D. Partitions and dominations in a graph. J. Combin. Math. Combin. Comput. 46 (2003), 113-128.
Haynes, T. W., Hedetniemi, S. T. and Slater, P. J. Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.
Haynes, T. W., Hedetniemi, S. T., Slater, P. J. Eds., Domination in Graphs: Advanced Topics. Marcel Dekker, New York, 1998.
Henning, M. A. Distance domination in graphs. In Topics in Domination in Graphs, T. W. Haynes, S. T. Hedetniemi, M. A. Henning, Eds. Developments in Mathematics, Vol 64, Springer, Cham., 2020, pp. 205-250.
Henning, M. A., Oellermann, O. R. and Swart, H. C. Bounds on distance domination parameters. J. Combin. Inform. System Sci. 16 (1991), 11-18.
Henning, M. A. and Vestergaard, P. D. Domination in partitioned graphs with minimum degree two. Discrete Math. 307 (2007), 1115-1135.
McCuaig, W. and Shepherd, B. Domination in graphs with minimum degree two. J. Graph Theory 13 (1989), 749-762.
Meir, A. and Moon, J. W. Relations beween packing and covering numbers of a tree. Pacific J. Math. 61 (1975), 225-233.
Ore, O. Theory of Graphs. Amer. Math. Soc. Colloq. Publ., Vol. 38, Amer. Math. Soc., Providence, RI, 1962.
Payan, C. Sur le nombre d’absorption d’un graph simple. Cah. Centre Études Rech. Opér. 17 (1975), 307-317.
Payan, C. and Xuong, N. H. Domination-balanced graphs. J. Graph Theory 6 (1982), 23-32.
Reed, B. Paths, stars and the number three. Combin. Probab. Comput. 5 (1996), 277-295.
Seager, S. M. Partition dominations of graphs of minimum degree 2. Congr. Numer. 132 (1998), 85-91.
Sohn, M.-Y. and Xudong, Y. Domination in graphs of minimum degree four. J. Korean Math. Soc. 46 (2009), 759-773.
Topp, J. and Volkmann, L. On packing and covering numbers of graphs. Discrete Math. 96 (1991), 229-238.
Turau, V. and Köhler, S. A distributed algorithm for minimum distance-fc domination in trees. J. Graph Algorithms Appl. 19 (2015), 223-242.
Tuza, Zs. Distance domination in vertex-partitioned graphs. (Presentation on joint work with A. Frendrup and P. D. Vestergaard.) 8th Slovenian Conference on Graph Theory, Kranjska Gora, June 21-27, 2015. http://kg15.herokuapp.com/abstracts/182
Tuza, Zs. and Vestergaard, P. D. Domination in partitioned graphs. Discuss. Math. Graph Theory 22 (2002), 199-210.