View More View Less
  • 1 Department of Mathematical Sciences, Aalborg University, DK-9220 Aalborg, Denmark
  • | 2 Alfréd Rényi Institute of Mathematics, Reáltanoda u. 13-15, 1053 Budapest, Hungary
  • | 3 Department of Computer Science and Systems Technology, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
Open access

We treat a variation of graph domination which involves a partition (V 1, V 2,..., Vk) of the vertex set of a graph G and domination of each partition class V i over distance d where all vertices and edges of G may be used in the domination process. Strict upper bounds and extremal graphs are presented; the results are collected in three handy tables. Further, we compare a high number of partition classes and the number of dominators needed.

  • [1]

    Alon, N. and Spencer, J. H. The Probabilistic Method. John Wiley and Sons, Inc., 1992.

  • [2]

    Arnautov, V. I. Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices. Prikl. Mat. i Programmirovanie 11 (1974), 3-8. (in Russian)

    • Search Google Scholar
    • Export Citation
  • [3]

    Bujtás, Cs. Domination number of graphs with minimum degree five. Discuss. Math. Graph Theory 41 (2021), 763-777.

  • [4]

    Caro, Y. and Roditty, Y. On the vertex-independence number and star decomposition of graphs. Ars Combin. 20 (1985), 167-180.

  • [5]

    Caro, Y. and Roditty, Y. A note on the k-domination number of a graph. Internat. J. Math. Sci. 13 (1990), 205-206.

  • [6]

    Chartrand, G. and Leśniak, L. Graphs and Digraphs. Third Edition, Chapman &Hall, London, 1996.

  • [7]

    Fink, J. F., Jacobson, M. S., Kinch, L. F. and Roberts, J. On graphs having domination number half their order. Period. Math. Hungar. 16 (1985), 287-293.

    • Search Google Scholar
    • Export Citation
  • [8]

    Frendrup, A., Tuza, Zs. and Vestergaard, P. D. Distance domination and vertex partitions. In Proc. Pannonian Conference on Advances in Information Technology, PCIT 2019, Vassányi, Ed. University of Pannonia, Veszprém, 2019, pp. 16-22. https://pcit2019.mik.uni-pannon.hu/images/program/PCIT_2019_Proceedings_NV.pdf

    • Search Google Scholar
    • Export Citation
  • [9]

    Fu, C-M. K. and Vestergaard, P. D. Distance domination in partitioned graphs. Congr. Numer. 182 (2006), 155-159.

  • [10]

    Hartnell, B. L. and Vestergaard, P. D. Partitions and dominations in a graph. J. Combin. Math. Combin. Comput. 46 (2003), 113-128.

  • [11]

    Haynes, T. W., Hedetniemi, S. T. and Slater, P. J. Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.

  • [12]

    Haynes, T. W., Hedetniemi, S. T., Slater, P. J. Eds., Domination in Graphs: Advanced Topics. Marcel Dekker, New York, 1998.

  • [13]

    Henning, M. A. Distance domination in graphs. In Topics in Domination in Graphs, T. W. Haynes, S. T. Hedetniemi, M. A. Henning, Eds. Developments in Mathematics, Vol 64, Springer, Cham., 2020, pp. 205-250.

    • Search Google Scholar
    • Export Citation
  • [14]

    Henning, M. A., Oellermann, O. R. and Swart, H. C. Bounds on distance domination parameters. J. Combin. Inform. System Sci. 16 (1991), 11-18.

    • Search Google Scholar
    • Export Citation
  • [15]

    Henning, M. A. and Vestergaard, P. D. Domination in partitioned graphs with minimum degree two. Discrete Math. 307 (2007), 1115-1135.

  • [16]

    McCuaig, W. and Shepherd, B. Domination in graphs with minimum degree two. J. Graph Theory 13 (1989), 749-762.

  • [17]

    Meir, A. and Moon, J. W. Relations beween packing and covering numbers of a tree. Pacific J. Math. 61 (1975), 225-233.

  • [18]

    Ore, O. Theory of Graphs. Amer. Math. Soc. Colloq. Publ., Vol. 38, Amer. Math. Soc., Providence, RI, 1962.

  • [19]

    Payan, C. Sur le nombre d’absorption d’un graph simple. Cah. Centre Études Rech. Opér. 17 (1975), 307-317.

  • [20]

    Payan, C. and Xuong, N. H. Domination-balanced graphs. J. Graph Theory 6 (1982), 23-32.

  • [21]

    Reed, B. Paths, stars and the number three. Combin. Probab. Comput. 5 (1996), 277-295.

  • [22]

    Seager, S. M. Partition dominations of graphs of minimum degree 2. Congr. Numer. 132 (1998), 85-91.

  • [23]

    Sohn, M.-Y. and Xudong, Y. Domination in graphs of minimum degree four. J. Korean Math. Soc. 46 (2009), 759-773.

  • [24]

    Topp, J. and Volkmann, L. On packing and covering numbers of graphs. Discrete Math. 96 (1991), 229-238.

  • [25]

    Turau, V. and Köhler, S. A distributed algorithm for minimum distance-fc domination in trees. J. Graph Algorithms Appl. 19 (2015), 223-242.

    • Search Google Scholar
    • Export Citation
  • [26]

    Tuza, Zs. Distance domination in vertex-partitioned graphs. (Presentation on joint work with A. Frendrup and P. D. Vestergaard.) 8th Slovenian Conference on Graph Theory, Kranjska Gora, June 21-27, 2015. http://kg15.herokuapp.com/abstracts/182

    • Search Google Scholar
    • Export Citation
  • [27]

    Tuza, Zs. and Vestergaard, P. D. Domination in partitioned graphs. Discuss. Math. Graph Theory 22 (2002), 199-210.

The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • † István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)