We prove certain Menon-type identities associated with the subsets of the set {1, 2,..., n} and related to the functions f, fk, Ф and Ф k, defined and investigated by Nathanson.
Caiúve, A., and Miguel, C. Menon-type identities with respect to sets of units. Ramanujan J. 55 (2021), 817-822.
Chen, M., and Qi, T. A Menon-Sury-type identity for arithmetic functions on Fq[T], Publ. Math. Debrecen 98, (2021), 1-14.
Haukkanen, P. Menon’s identity with respect to a generalized divisibility relation. Aequationes Math. 70 (2005), 240-246.
Haukkanen, P., and Tóth, L. Menon-type identities again: A note on a paper by Li, Kim and Qiao. Publ. Math. Debrecen 96 (2020), 487-502.
Ji, Ch., and Wang, Y. Another regular Menon-type identity in residually finite Dedekind domains. Acta Math. Hungar 162 (2020), 117-129.
Menőn, P. K. On the sum ∑ a − 1 , n a , n = 1. J. Indian Math. Soc. (N.S.) 29 (1965), 155-163.
Nathansőn, M. B. Affine invariants, relatively prime sets, and a phi function for subsets of {1,2,..., n}. Integers 7 (2007), Paper A1.
Slőane, N. J. A. The On-Line Encyclopedia of Integer Sequences. https://oeis.org.
Tenenbaum, G. Introduction to Analytic and Probabilistic Number Theory. Third edition. Graduate Studies in Mathematics 163, American Mathematical Society, Providence, 2015.
Tóth, L. On the number of certain relatively prime subsets of {1,2,..., n}. Integers 10 (2010), Paper A35, 407-421.
Tóth, L. Menon’s identity and arithmetical sums representing functions of several variables. Rend. Sem. Mat. Univ. Politec. Torino 69 (2011) 97-110.
Tóth, L. Menon-type identities concerning Dirichlet characters. Int. J. Number Theory 14 (2018), 1047-1054.
Tóth, L. Another generalization of Euler’s arithmetic function and Menon’s identity. Ramanujan J. 57 (2022), 811-822.
Tóth, L. Proofs, generalizations and analogs of Menon’s identity: a survey. Preprint, 2021, 46 pp., arXiv:2110.07271v2 [math.NT].
Wang, Y.-J., Zhang, X., and Ji, C.-G. A regular Menon-type identity in residually finite Dedekind domains, Acta Arith. 188 (2019), 111-123.