Author:
László Tóth Department of Mathematics, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary

Search for other papers by László Tóth in
Current site
Google Scholar
PubMed
Close
Open access

We prove certain Menon-type identities associated with the subsets of the set {1, 2,..., n} and related to the functions f, fk, Ф and Ф k, defined and investigated by Nathanson.

  • [1]

    Caiúve, A., and Miguel, C. Menon-type identities with respect to sets of units. Ramanujan J. 55 (2021), 817-822.

  • [2]

    Chen, M., and Qi, T. A Menon-Sury-type identity for arithmetic functions on Fq[T], Publ. Math. Debrecen 98, (2021), 1-14.

  • [3]

    Haukkanen, P. Menon’s identity with respect to a generalized divisibility relation. Aequationes Math. 70 (2005), 240-246.

  • [4]

    Haukkanen, P., and Tóth, L. Menon-type identities again: A note on a paper by Li, Kim and Qiao. Publ. Math. Debrecen 96 (2020), 487-502.

    • Search Google Scholar
    • Export Citation
  • [5]

    Ji, Ch., and Wang, Y. Another regular Menon-type identity in residually finite Dedekind domains. Acta Math. Hungar 162 (2020), 117-129.

    • Search Google Scholar
    • Export Citation
  • [6]

    Menőn, P. K. On the sum a 1 , n a , n = 1. J. Indian Math. Soc. (N.S.) 29 (1965), 155-163.

  • [7]

    Nathansőn, M. B. Affine invariants, relatively prime sets, and a phi function for subsets of {1,2,..., n}. Integers 7 (2007), Paper A1.

    • Search Google Scholar
    • Export Citation
  • [8]

    Slőane, N. J. A. The On-Line Encyclopedia of Integer Sequences. https://oeis.org.

  • [9]

    Tenenbaum, G. Introduction to Analytic and Probabilistic Number Theory. Third edition. Graduate Studies in Mathematics 163, American Mathematical Society, Providence, 2015.

    • Search Google Scholar
    • Export Citation
  • [10]

    Tóth, L. On the number of certain relatively prime subsets of {1,2,..., n}. Integers 10 (2010), Paper A35, 407-421.

  • [11]

    Tóth, L. Menon’s identity and arithmetical sums representing functions of several variables. Rend. Sem. Mat. Univ. Politec. Torino 69 (2011) 97-110.

    • Search Google Scholar
    • Export Citation
  • [12]

    Tóth, L. Menon-type identities concerning Dirichlet characters. Int. J. Number Theory 14 (2018), 1047-1054.

  • [13]

    Tóth, L. Another generalization of Euler’s arithmetic function and Menon’s identity. Ramanujan J. 57 (2022), 811-822.

  • [14]

    Tóth, L. Proofs, generalizations and analogs of Menon’s identity: a survey. Preprint, 2021, 46 pp., arXiv:2110.07271v2 [math.NT].

  • [15]

    Wang, Y.-J., Zhang, X., and Ji, C.-G. A regular Menon-type identity in residually finite Dedekind domains, Acta Arith. 188 (2019), 111-123.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • † Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)