For a lattice L of finite length n, let RCSub(L) be the collection consisting of the empty set and those sublattices of L that are closed under taking relative complements. That is, a subset X of L belongs to RCSub(L) if and only if X is join-closed, meet-closed, and whenever {a, x, b} ⊆ S, y ∈ L, x ∧ y = a, and x ∨ y = b, then y ∈ S. We prove that (1) the poset RCSub(L) with respect to set inclusion is lattice of length n + 1, (2) if RCSub(L) is a ranked lattice and L is modular, then L is 2-distributive in András P. Huhn’s sense, and (3) if L is distributive, then RCSub(L) is a ranked lattice.
Bell, E. T. The iterated exponential integers. Annals of Mathematics (2), 3 (1938), 539–557.
Birkhoff, G. Rings of sets. Duke Mathematical Journal 3 (1937), 443–454.
Birkhoff, G. Von neumann and lattice theory. Bull. Amer. Math. Soc 64 (1958), 50–56.
Chajda, I., HALAS, R., and KÜHR, J. Semilattice structures, vol. 30 of Research and Exposition in Mathematics. Heldermann Verlag, Lemgo, 2007.
Chen, C. C., and Koh, K. M. On the length of the lattice of sublattices of a finite distributive lattice. Algebra Universalis 15, 2 (1982), 233–241.
Chen, C. C., Koh, K. M., and Teo, K. L. On the sublattice-lattice of a lattice. Algebra Universalis 19, 1 (1984), 61–73.
Czédli, G. On the 2-distributivity of sublattice lattices. Acta Math. Acad. Sci. Hungar. 36, 1-2 (1980), 49–55.
Czédli, G. Which distributive lattices have 2-distributive sublattice lattices? Acta Math. Acad. Sci. Hungar. 35, 3-4 (1980), 455–463.
Czédli, G. Lattices of retracts of direct products of two finite chains and notes on retracts of lattices. http://arxiv.org/abs/2112.12498.
Day, A. A note on arguesian lattices. Arch. Math. (Brno) 19, 3 (1983), 117–123.
Dilworth, R. P. Lattices with unique complements. Trans. Amer. Math. Soc. 57, 1 (1945), 123–154.
Filippov, N. D. Projections of lattices. Mat. Sb. (N.S.) 70 (112), 1 (1966), 36–54.
Grätzer, G. Lattice theory. First concepts and distributive lattices. Freeman and Company, San Francisco, California, 1971.
Grätzer, G. Two problems that shaped a century of lattice theory. Notices of the AMS 54, 6 (2007), 696–707.
Grätzer, G. Lattice Theory: Foundation. Birkhäuser/Springer Basel AG, Basel, 2011.
Herrmann, C. On the arithmetic of projective coordinate systems. Trans. Amer. Math. Soc. 284, 2 (1984), 759–785.
Herrmann, C., and Huhn, A. P. Lattices of normal subgroups which are generated by frames. In Lattice theory (Proc. Colloq. Szeged 1974), A. P. Huhn and E. T. Schmidt, Eds., Colloq. Math. Soc. János Bolyai. North-Holland Publishing Company, Amsterdam-Oxford-New York, 1976, pp. 97–136.
Huhn, A. P. Schwach distributive verbände. Acta Fac. Rerum Natur. Univ. Comenian. Math. Mimoriadne čislo (1971), 51–56.
Huhn, A. P. Schwach distributive verbände. Acta Sci. Math.(Szeged) 33, 3–4 (1972), 297–305.
Huhn, A. P. Two notes on n-distributive lattices. In Lattice theory (Proc. Colloq. Szeged 1974), A. P. Huhn and E. T. Schmidt, Eds., Colloq. Math. Soc. János Bolyai. North-Holland Publishing Company, Amsterdam-Oxford-New York, 1976, pp. 137–147.
Huhn, A. P. n-distributivity and some questions of the equational theory of lattices. In Contributions to universal algebra (Proc. Colloq., Szeged, 1975), B, Csákány and J, Schmidt, Eds., Colloq. Math. Soc. János Bolyai. North-Holland Publishing Company, Amsterdam, 1977, pp. 167–178.
Huhn, A. P. On nonmodular n-distributive lattices. I. lattices of convex sets. Acta Sci. Math.(Szeged) 52, 1-2 (1988), 35–45.
Jakubík, J. Modular lattices of locally finite length. Acta Sci. Math.(Szeged) 37, 1-2 (1975), 79–82.
Koh, K. M. On the length of the sublattice-lattice of a finite distributive lattice. Algebra Universalis 16, 3 (1983), 282–286.
Lakser, H. A note on the lattice of sublattices of a finite lattice. Nanta Math. 6, 1 (1973), 55–57.
Von Neumann, J. Continuous Geometry. Princeton Mathematical Series. Princeton University Press, Princeton, N.J., 1960.
Ramananda, H. S. Number of convex sublattices of a lattice. Southeast Asian Bull. Math. 42, 1 (2018), 89–94.
Stephan, J. On the length of the lattice of sublattices of a finite distributive lattice. Algebra Universalis 30, 3 (1993), 331–336.
Takách, G. Lattices characterized by their sublattice-lattices. Algebra Universalis 37, 4 (1997), 422–425.
Takách, G. Notes on sublattice-lattices. Periodica Mathematica Hungarica 35, 3 (1997), 215–224.
Takách, G. On the sublattice-lattices of lattices. Publ. Math. Debrecen 52, 1–2 (1998), 121–126.
Takách, G. On the dependence of related structures of lattices. Algebra Universalis 42, 1–2 (1999), 131–139.
Tan, T. On the lattice of sublattices of a modular lattice. Nanta Math. 11, 1 (1978), 17–21.
Wehrung, F. A solution of Dilworth’s congruence lattice problem. Adv. Math. 216, 2 (2007), 610–625.