The bipartite domination number of a graph is the minimum size of a dominating set that induces a bipartite subgraph. In this paper we initiate the study of this parameter, especially bounds involving the order, the ordinary domination number, and the chromatic number. For example, we show for an isolate-free graph that the bipartite domination number equals the domination number if the graph has maximum degree at most 3; and is at most half the order if the graph is regular, 4-colorable, or has maximum degree at most 5.
Allan, R. B. and Laskar, R. On domination and independent domination numbers of a graph. Discrete Math. 23 (1978), 73–76.
Borowiecki, M. Michalak, D. and Sidorowicz, E. Generalized domination, independence and irredundance. Discuss. Math. Graph Theory 17 (1997), 143–153.
Chartrand, G. Kronk, H. V. and Wall, C. E. The point-arboricity of a graph. Israel J. Math. 6 (1968), 169–175.
Cho, E.-K., Choi, I. and Park, B. On independent domination of regular graphs. arXiv:2107.00295.
Goddard, W., Haynes, T. W. and Knisely, D. Hereditary domination and independence parameters. Discuss. Math. Graph Theory 24 (2004), 239–248.
Goddard, W. and Henning, M. A. Independent domination in graphs: A survey and recent results. Discrete Math. 313 (2013), 839–854.
Goddard, W. and Henning, M. A. Thoroughly dispersed colorings. J. Graph Theory 88 (2018), 174–191.
Haynes, T. W. and Henning, M. A. Path-free domination. J. Combin. Math. Combin. Comput. 33 (2000), 9–21.
Hedetniemi, J. T., Hedetniemi, K. D., Hedetniemi, S. M. and Hedetniemi, S. T. Secondary and internal distances of sets in graphs. AKCE Int. J. Graphs Comb. 6 (2009), 239–266
Hedetniemi, S. M., Hedetniemi, S. T. and Rall, D. F. Acyclic domination. Discrete Math 222 (2000), 151–165.
Ko, C. W. and Shepherd, F. B. Bipartite domination and simultaneous matroid covers. SIAM J. Discrete Math. 16 (2003), 517–523.
MacGillivray, G. and Seyffarth, K. Bounds for the independent domination number of graphs and planar graphs. J. Combin. Math. Combin. Comput. 49 (2004), 33–55.
Matheson, L. R. and Tarjan, R. E. Dominating sets in planar graphs. European J. Combin. 17 (1996), 565–568.
Payan, C. and Xuong, N. H. Domination-balanced graphs. J. Graph Theory 6 (1982), 23–32.
Samodivkin, V. D. Domination with respect to nondegenerate and hereditary properties. Mathematica Bohemica 133 (2008), 167–178.
Sampathkumar, E. and Walikar, H. B. The connected domination number of a graph. J. Math. Phys. Sci. 13 (1979), 607–613.