Authors:
Anna BachsteinSchool of Mathematical and Statistical Sciences, Clemson University, USA

Search for other papers by Anna Bachstein in
Current site
Google Scholar
PubMed
Close
,
Wayne GoddardSchool of Mathematical and Statistical Sciences, Clemson University, USA
Dept of Mathematics and Applied Mathematics, University of Johannesburg, South Africa

Search for other papers by Wayne Goddard in
Current site
Google Scholar
PubMed
Close
, and
Michael A. HenningDept of Mathematics and Applied Mathematics, University of Johannesburg, South Africa

Search for other papers by Michael A. Henning in
Current site
Google Scholar
PubMed
Close
Open access

The bipartite domination number of a graph is the minimum size of a dominating set that induces a bipartite subgraph. In this paper we initiate the study of this parameter, especially bounds involving the order, the ordinary domination number, and the chromatic number. For example, we show for an isolate-free graph that the bipartite domination number equals the domination number if the graph has maximum degree at most 3; and is at most half the order if the graph is regular, 4-colorable, or has maximum degree at most 5.

  • [1]

    Allan, R. B. and Laskar, R. On domination and independent domination numbers of a graph. Discrete Math. 23 (1978), 7376.

  • [2]

    Borowiecki, M. Michalak, D. and Sidorowicz, E. Generalized domination, independence and irredundance. Discuss. Math. Graph Theory 17 (1997), 143153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [3]

    Chartrand, G. Kronk, H. V. and Wall, C. E. The point-arboricity of a graph. Israel J. Math. 6 (1968), 169175.

  • [4]

    Cho, E.-K., Choi, I. and Park, B. On independent domination of regular graphs. arXiv:2107.00295.

  • [5]

    Goddard, W., Haynes, T. W. and Knisely, D. Hereditary domination and independence parameters. Discuss. Math. Graph Theory 24 (2004), 239248.

  • [6]

    Goddard, W. and Henning, M. A. Independent domination in graphs: A survey and recent results. Discrete Math. 313 (2013), 839854.

  • [7]

    Goddard, W. and Henning, M. A. Thoroughly dispersed colorings. J. Graph Theory 88 (2018), 174191.

  • [8]

    Haynes, T. W. and Henning, M. A. Path-free domination. J. Combin. Math. Combin. Comput. 33 (2000), 921.

  • [9]

    Hedetniemi, J. T., Hedetniemi, K. D., Hedetniemi, S. M. and Hedetniemi, S. T. Secondary and internal distances of sets in graphs. AKCE Int. J. Graphs Comb. 6 (2009), 239266

    • Search Google Scholar
    • Export Citation
  • [10]

    Hedetniemi, S. M., Hedetniemi, S. T. and Rall, D. F. Acyclic domination. Discrete Math 222 (2000), 151165.

  • [11]

    Ko, C. W. and Shepherd, F. B. Bipartite domination and simultaneous matroid covers. SIAM J. Discrete Math. 16 (2003), 517523.

  • [12]

    MacGillivray, G. and Seyffarth, K. Bounds for the independent domination number of graphs and planar graphs. J. Combin. Math. Combin. Comput. 49 (2004), 3355.

    • Search Google Scholar
    • Export Citation
  • [13]

    Matheson, L. R. and Tarjan, R. E. Dominating sets in planar graphs. European J. Combin. 17 (1996), 565568.

  • [14]

    Payan, C. and Xuong, N. H. Domination-balanced graphs. J. Graph Theory 6 (1982), 2332.

  • [15]

    Samodivkin, V. D. Domination with respect to nondegenerate and hereditary properties. Mathematica Bohemica 133 (2008), 167178.

  • [16]

    Sampathkumar, E. and Walikar, H. B. The connected domination number of a graph. J. Math. Phys. Sci. 13 (1979), 607613.

  • Collapse
  • Expand
  • Top
The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • † István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2022 0 0 0
May 2022 0 0 0
Jun 2022 0 80 75
Jul 2022 0 41 52
Aug 2022 0 25 18
Sep 2022 0 25 17
Oct 2022 0 0 0