Authors:
Xiaoqiang XieDepartment of Mathematics, College of Arts and Sciences, Shanghai Polytechnic University, Shanghai 201209, P. R. China

Search for other papers by Xiaoqiang Xie in
Current site
Google Scholar
PubMed
Close
,
Xi FuShanghai Polytechnic University, Shanghai 201209, P. R. China

Search for other papers by Xi Fu in
Current site
Google Scholar
PubMed
Close
, and
Changmin LiShanghai University, Shanghai, 200444, P. R. China

Search for other papers by Changmin Li in
Current site
Google Scholar
PubMed
Close
Open access

In this paper, we show a Marcinkiewicz type interpolation theorem for Orlicz spaces. As an application, we obtain an existence result for a parabolic equation in divergence form.

  • [1]

    ORLICZ, W. On a class of operations over the space of integrable functions. Studia Math. 14 (1954), 302309.

  • [2]

    MALIGRANDA, L. Some remarks on Orlicz interpolation theorems. Studia Math. 95 (1989), 4358.

  • [3]

    GUSTAVSSON, J., PEETRE, J. Interpolation of Orlicz spaces. Studia Math. 60 (1977), 3359.

  • [4]

    SHESTAKOV, V. A. Transformations of Banch lattics and the interpolation of linear operators. Bull. Polish Sci. Math. 29 (1981), 569577 (in Russion).

    • Search Google Scholar
    • Export Citation
  • [5]

    MALIGRANDA, L. Orlicz Spaces and Interpolation. Seminars in Mathematics 5, Univ. Estadual de Campinas, Campinas SP, Brazil 1989.

  • [6]

    REN, Y. Marcinkiewicz type interpolation theorems for weak Orlicz martingale spaces and application. Indagationes Mathematicae 26 (2015), 384392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [7]

    HARJULEHTO, P., HÄSTÖ, P. Orlicz Spaces and Generalized Orlicz Spaces. Lecture Notes in Mathmatics, 2019, Volume 2236, ISBN 978-3-030-15099-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [8]

    LIU, P. D., WANG, M. F. Weak Orlicz spaces: some basic properties and their applications to harmonic analysis. Sci. China Math. 56, 4 (2013), 789802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [9]

    BYUN, S. S. Optimal Y 1,p regularity theory for parabolic equations in divergence form. Journal of Evolution Equations 7, 3 (2007), 415428.

  • Collapse
  • Expand
The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • † István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)