This manuscript deals with the global existence and asymptotic behavior of solutions for a Kirchhoff beam equation with internal damping. The existence of solutions is obtained by using the Faedo-Galerkin method. Exponential stability is proved by applying Nakao’s theorem.
AUBIN, J. P. Un thèoréme de compacité. C. R. Acad. Sci. 256 (1963), 5042–5044.
BERGER, M. A new approach to the large deflection of plate. J. Appl. Mech. 22 (1955), 465–472.
BURGREEN, D. Free vibrations of a pin-ended column with constant distance between pin ends. J. Appl. Mech. 18 (1951), 135–139.
CAVALCANTI, M. M., CAVALCANTI, V. D., and SORIANO, J. A. Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation. Commun. Contemp. Math. 6 (2004), 705–731.
CODDINGTON, E., and LEVINSON, N. Theory of Ordinary Differential Equations. McGraw-Hill Inc., New York, 1955.
EISLEY, J. Nonlinear vibration of beams and rectangular plates. Z. Angew. Math. Phys. 15 (1964), 167–175.
KIRCHHOFF, G. Vorlesungen uber mechanik. Tauber, Leipzig, 1883.
LIONS, J. L. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier Villars, Paris, 1969.
MEDEIROS, L. A., LIMACO, J., and MENEZES, S. B. Vibrations of elastic strings: mathematical aspects, part one. J. Comput. Anal. Appl. 4 (2002), 91–127.
MIKLIN, S. Variational Methods in Mathematical Physics. Pergamon Press, Oxford, 1964.
MIRANDA, M. M., and JUTUCA, P. S. G. Existence and boundary stabilization of solutions for the kirchhoff equation. Commun. Partial Differential Equations 24 (1999), 1759–1880.
MIRANDA, M. M., LOUREIRO, A. T., and MEDEIROS, L. A. Nonlinear pertubartions of the kirchoff equations. Electron. J. Differ. Equ. 77 (2017), 1–21.
NAKAO, M. A difference inequalit and its application to nonlinear evolution equation. J. Math. Soc. Japan 30 (1978), 747–762.
NAKAO, M. Decay estimates for some semilinear wave equations with degenerate dissipative terms. Funkc. Ekvacioj 30 (1987), 135–145.
PEREIRA, D. C., NGUYEN, H. H., RAPOSO, C. A., and MARANHAO, C. H. M. On the solutions for an extensible beam equation with internal damping and source terms. Differ. Equ. Appl. 11 (2019), 367–377.
SIMON, J. Compact sets in the space lp(o,t;b). Ann. Mat. Pura Appl. 146 (1986), 65–96.
TARTAR, L. Topics in Nonlinear Analysis. Uni. Paris Sud. Dep. Math., Orsay, 1978.
WOINOWSKY-KRIEGER, S. The effect of an axial force on the vibration of hinged bars. J. Appl. Mech. 17 (1950), 35–36.
ZHIJIAN, Y. On an extensible beam equation with nonlinear damping and source terms. Ann. Mat. Pura Appl. 254 (2013), 3903–3927.