We consider hypersphere x = x(u, v, w) in the four dimensional Euclidean space. We calculate the Gauss map, and the curvatures of it. Moreover, we compute the second Laplace-Beltrami operator the hypersphere satisfying ΔIIx = Ax, where A ϵ Mat (4,4).
ALIAS, L. J., and GÜRBÜZ, N. An extension of Takashi theorem for the linearized operators of the highest order mean curvatures. Geom. Dedicata 121 (2006), 113-127.
ARSLAN, K., BAYRAM, B. K., BULCA, B., KIM, Y. H., MURATHAN, C., and ÖZTÜRK, G. Vranceanu surface in E4 with pointwise 1-type Gauss map. Indian J. PureAppl. Math. 42, 1 (2011), 41-51.
ARSLAN, K., BAYRAM, B.K., BULCA, B., and ÖZTÜRK, G. Generalized rotation surfaces in E4. Results Math. 61, 3 (2012), 315-327.
ARSLAN, K., and MILOUSHEVA, V. Meridian surfaces of elliptic or hyperbolic type with pointwise 1- type Gauss map in Minkowski 4-space. Taiwanese J. Math. 20, 2 (2016), 311-332.
ARSLAN, K., SÜTVEREN, A., and BULCA, B. Rotational A-hypersurfaces in Euclidean spaces. Creat. Math. Inform. 30, 1 (2021), 29-40.
ARVANITOYEORGOS, A., KAIMAKAMIS, G., and MAGID, M. Lorentz hypersurfaces in E 1 4 satisfying ΔH = αH. Illinois J. Math. 53, 2 (2009), 581-590.
BARROS, M., and CHEN, B. Y. Stationary 2-type surfaces in a hypersphere. J. Math. Soc. Japan 39, 4 (1987), 627-648.
BARROS, M., and GARAY, O. J. 2-type surfaces in S3. Geom. Dedicata 24, 3 (1987), 329-336.
BEKTAŞ, B., CANFES, E. Ö, and DURSUN, U. Classihcation of surfaces in a pseudo-sphere with type pseudo-spherical Gauss map. Math. Nachr. 290, 16 (2017), 2512-2523.
CHEN, B. Y. On submanifolds of hnite type. Soochow J. Math. 9 (1983), 65-81.
CHEN, B. Y. Total mean curvature and submanifolds of finite type. World Scientihc, Singapore (1984).
CHEN, B. Y. Finite type submanifolds and generalizations. University of Rome, 1985.
CHEN, B. Y. Finite type submanifolds in pseudo-Euclidean spaces and applications. Kodai Math. J. 8, 3 (1985), 358-374.
CHEN, B. Y., and PICCINNI, P. Submanifolds with finite type Gauss map. Bull. Austral. Math. Soc. 35 (1987), 161-186.
CHENG, Q. M., and WAN, Q. R. Complete hypersurfaces of R4 with constant mean curvature. Monatsh. Math. 118 (1994), 171-204.
CHENG, S. Y., and YAU, S. T Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195-204.
CHOI, M., and KIM, Y. H. Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bull. Korean Math. Soc. 38 (2001), 753-761.
DILLEN, F., PAS, J., and VERSTRAELEN, L. On surfaces of finite type in Euclidean 3-space. Kodai Math. J. 13 (1990), 10-21.
DO CARMO, M., and DAJCZER, M. Rotation hypersurfaces in spaces of constant curvature. Trans. Amer. Math. Soc. 277 (1983), 685-709.
DURSUN, U. Hypersurfaces with pointwise 1-type Gauss map. Taiwanese J. Math. 11, 5 (2007), 1407-1416.
DURSUN, U., and TURGAY, N. C. Space-like surfaces in Minkowski space E 1 4 with pointwise 1-type Gauss map. Ukrainian Math. J. 71, 1 (2019), 64-80.
FERRANDEZ, A., GARAY, O. J., and LUCAS, P. On a certain class of conformally at Euclidean hypersurfaces. In Global Analysis and Global Differential Geometry. Springer, Berlin, Germany, 1990, pp. 48-54.
GANCHEV, G., and MILOUSHEVA, V. General rotational surfaces in the 4-dimensional Minkowski space. Turkish J. Math. 38 (2014), 883-895.
GARAY, O. J. On a certain class of finite type surfaces of revolution. Kodai Math. J. 11 (1988), 25-31.
GARAY, O. An extension of Takahashi’s theorem. Geom. Dedicata 34 (1990), 105-112.
GÜLER, E. Fundamental form IV and curvature formulas of the hypersphere. Malaya J. Mat. 8, 4 (2020), 2008-2011.
GÜLER, E. Rotational hypersurfaces satisfying ΔIR = AR in the four-dimensional Euclidean space. J. Polytechnic 24, 2 (2021), 517-520.
GÜLER, E., HACISALIHOGLU, H. H., and KIM, Y. H. The Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface in 4-space. Symmetry 10, 9 (2018), 1-12.
GÜLER, E., MAGID, M., and YAYLI, Y. Laplace-Beltrami operator of a helicoidal hypersurface in four-space. J. Geom. Symm. Phys. 41 (2016), 77-95.
GÜLER, E., and TURGAY, N. C. Cheng-Yau operator and Gauss map of rotational hypersurfaces in 4-space. Mediterr. J. Math. 16, 3 (2019), 1-16.
GÜLER, E., YAYLI, Y., and HACISALIHOĞLU, H. H. Birotational hypersurface and the second Laplace-Beltrami operator in the four dimensional Euclidean space E4. Turkish J. Math., 46, 6 (2022), 2167-2177.
GÜLER, E., YAYLI, Y., and HACISALIHOĞLU, H. H. Bi-rotational hypersurface satisfying Δx = Ax in pseudo-Euclidean space E 2 4 TWMS J. Pure Appl. Math., preprint.
HASANIS, TH., and VLACHOS, TH. Hypersurfaces in E4 with harmonic mean curvature vector field. Math. Nachr. 172 (1995), 145-169.
KAHRAMAN AKSOYAK, F., and YAYLI, Y. Flat rotational surfaces with pointwise 1-type Gauss map in E4. Honam Math. J. 38, 2 (2016), 305-316.
KAHRAMAN AKSOYAK, F., and YAYLI, Y. General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space E 2 4 Indian J Pure Appl. Math. 46,1 (2015), 107-118.
KIM, D. S., KIM, J. R., and KIM, Y. H. Cheng-Yau operator and Gauss map of surfaces of revolution. Bull. Malays. Math. Sci. Soc. 39, 4 (2016), 1319-1327.
KIM, Y. H., and TURGAY, N. C. Surfaces in E4 with L1-pointwise 1-type Gauss map. Bull. Korean Math. Soc. 50, 3 (2013), 935-949.
KÜHNEL, W. Differential geometry. Curves-surfaces-manifolds. Third ed. Translated from the 2013 German ed. AMS, Providence, RI, 2015.
MOORE, C. Surfaces of rotation in a space of four dimensions. Ann. Math. 21 (1919), 81-93.
MOORE, C. Rotation surfaces of constant curvature in space of four dimensions. Bull. Amer. Math. Soc. 26 (1920), 454-460.
SENOUSSI, B., and BEKKAR, M. Helicoidal surfaces with ΔJr = Ar in 3-dimensional Euclidean space. Stud. Unix. Babeş-Bolyai Math. 60, 3 (2015), 437-448.
STAMATAKIS, S., and ZOUBI, H. Surfaces of revolution satisfying ΔIIIx = Ax. J. Geom. Graph. 14, 2 (2010), 181-186.
TAKAHASHI, T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan 18 (1966), 380-385.
TURGAY, N. C. Some classifications of Lorentzian surfaces with finite type Gauss map in the Minkowski 4-space. J. Aust. Math. Soc. 99, 3 (2015), 415-427.