In this paper, we introduce the notion of a Gel’fand Γ-semiring and discuss the various characterization of simple, k-ideal, strong ideal, t-small elements and additively cancellative elements of a Gel’fand Γ-semiring R, and prove that the set of additively cancellative elements, set of all t-small elements of R and set of all maximal ideal of R are strong ideals. Further, let R be a simple Gel’fand Γ-semiring and 1 ≠ t ∈ R. Let M be the set of all maximal left (right) ideals of R. Then an element x of R is t-small if and only if it belongs to every maximal one sided left (right)ideal of R containing t.
Barnes, W. E. On the Γ−rings of Nobusawa. Pacific J. Math. 18, 3 (1966), 411–422.
Dedekind, R. Über die Theorie der ganzen algebraischen Zahlen, supplement XI to P. G. Lejeune Dirichlet: Vorlesungen über Zahlentheorie. 4 Aufi., ch. Druck and Verlag, Braunschweig, 1894.
Eilenberg, S. Automata language and machines, vol. A. Academic Press, New York, 1974.
Glazek, K. A guide to the literature on semiring and their applications in mathematics and information sciences. Kluwer Academic Publisher, Dordrecht, 2002.
Golan, J. S. Semirings and their applications. Kluwer Academic Publisher, Dordrecht/Boston/London, 1999.
Golan, J. S. Semirings and affine equations over them: theory and application. Kluwer Academic Publisher, Dordrecht/Boston/London, 2003.
LaTorre, D. R. On h-ideals and k-ideals in hemirings. Publ. Math. Debrecen 12 (1965), 219–226.
Nobusawa, N. On a generalization of the ring theory. Osaka J. Math. 1 (1964), 81–89.
Rao, M. M. K. Γ-semirings-1. South East Asian Bull. of Math. 19 (1995), 49–54.
Rao, M. M. K. A study of bi-quasi-interior ideals as a new generalization of ideals of gen-eralization of semiring. Bulletin of The International Mathematical Virtual Institute 8 (2018), 519–535.
Sharma, T. R. and Gupta, S. Some conditions on Γ-semirings. JCISS 41 (2016), 79–87.
Sharma, T. R. and Gupta, S. Ideals of a Bourne factor Γ-semirings. Proceedings of NCAMS-2016, Research Journal of Science and Technology 09, 01 (2017), 171–174.
Sharma, T. R. and Ranote, H. K. More conditions on a Γ-semiring and ideals of an Izuka and Bourne factor Γ-Semiring. South East Asian Journal of Mathematics and Mathematical Sciences 18, 01 (April 2022), 71–84.
Slowikowski, W. and Zawadowski, W. A generalization of maximal ideals method of stone and Gel’fand. Fund. Math. 42 (1995), 225–231.
Vandiver, H. S. Note on a simple type of algebra in which the cancellation law of addition does not hold. Bull. Amer. Math. Soc. 40, 12 (1934), 914–920.