Let n ∈ ℕ. An element (x1, … , xn) ∈ En is called a norming point of
Norm(T) is called the norming set of T.
Let
In this paper, we classify Norm(T) for every
ARON, R. M., FINET C., AND WERNER, E. Some remarks on norm-attaining n-linear forms, Function spaces (Edwardsville, IL, 1994), Lecture Notes in Pure and Appl. Math., 172, Dekker, New York, 1995, pp. 19–28.
BISHOP, E. AND PHELPS, R. A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc. 67, (1961), 97–98.
CHOI, Y. S. AND kIM, S. G. Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. 54, 2 (1996), 135–147.
DINEEN, S. Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London (1999).
JIMÉNEZ SEVILLA M. AND PAYÁ, R. Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, Studia Math. 127, (1998), 99–112.
KIM, S. G. The norming set of a bilinear form on l ∞ 2, Comment. Math. 60, (1–2) (2020), 37–63.
KIM, S. G. The norming set of a polynomial in P 2 l ∞ 2, Honam Math. J. 42, 3 (2020), 569-576.
KIM, S. G. The norming set of a symmetric bilinear form on the plane with the supremum norm, Mat. Stud. 55, 2 (2021), 171–180.
KIM, S. G. The norming set of a symmetric 3-linear form on the plane with the l1-norm, New Zealand J. Math. 51, (2021), 95–108.
KIM, S. G. The norming sets of L 2 l 1 2 and L s 2 l 1 3, Bull. Transilv. Univ. Brasov, Ser. III: Math. Comput. Sci. 64, 2 (2022), 125–150.
KIM, S. G. The norming sets of L 2 ℝ h w 2, to appear in Acta Sci. Math. (Szeged) 89, 3–4 (2023)