Authors:
Muhammad Saad Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21511, Egypt

Search for other papers by Muhammad Saad in
Current site
Google Scholar
PubMed
Close
and
Usama A. Aburawash Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21511, Egypt

Search for other papers by Usama A. Aburawash in
Current site
Google Scholar
PubMed
Close
Open access

In this note, we introduce the concept of semi-*-IFP, the involutive version of semi-IFP, which is a generalization of quasi-*-IFP and *-reducedness of *-rings. We study the basic structure and properties of *-rings having semi-*-IFP and give results for IFPs in rings with involution. Several results and counterexamples are stated to connect the involutive versions of IFP. We discuss the conditions for the involutive IFPs to be extended into *-subrings of the ring of upper triangular matrices. In *-rings with quasi-*-IFP, it is shown that Köthe’s conjecture has a strong affirmative solution. We investigate its related properties and the relationship between *-rings with quasi-*-IFP and *-Armendariz properties.

  • [1]

    Aburawash, U. A. On *-simple involution rings with minimal *-biideals. Studia Sci. Math. Hungarica 32, 3 (1996), 455458.

  • [2]

    Aburawash, U. A. On embedding of involution rings. Math. Pannonica 8, 2 (1997), 245250.

  • [3]

    Aburawash, U. A. On involution rings. East-West J. Math. 2, 2 (2002), 109126.

  • [4]

    Aburawash, U. A. *-zero divisors and *-prime ideals. East-West J. Math. 12, 1 (2010), 2731.

  • [5]

    Aburawash, U. A., and Elgamudi, B. M. *-Armendariz property for involution rings. East-West J. Math. 21, 02 (2019), 171181.

  • [6]

    Aburawash, U. A., and Saad, M. On biregular, IFP and quasi-Baer *-rings. East-West J. Math. 16, 2 (2014), 182192.

  • [7]

    Aburawash, U. A., and Saad, M. *-baer property for rings with involution. Studia Scientiarum Mathematicarum Hungarica 53, 2 (2016), 243255.

    • Search Google Scholar
    • Export Citation
  • [8]

    Aburawash, U. A., and Saad, M. Reversible and reflexive properties for rings with involution. Miskolc Math. Notes 20, 2 (2019), 635650.

    • Search Google Scholar
    • Export Citation
  • [9]

    Armendariz, E. P. A note on extensions of Baer and p.p.-rings. J. Austral. Math. Soc. 18 (1974), 470473.

  • [10]

    Beidar, K. I., Márki, L., Mlitz, R., and Wiegandt, R. Primitive involution rings. Acta Math. Hung. 109, 4 (2005), 357368.

  • [11]

    Bell, H. E. Near-rings in which each element is a power of itself. Bull. Austral. Math. Soc. 2 (1970), 363368.

  • [12]

    Birkenmeier, G. F., and Groenewald, N. J. Prime ideals in rings with involution. Quaest. Math. 20, 4 (1997), 591603.

  • [13]

    Birkenmeier, G. F., Park, J. K., and Rizvi, S. T. Hulls of semiprime rings with applications to 𝐶*-algebras. J. Algebra 322 (2009), 327352.

    • Search Google Scholar
    • Export Citation
  • [14]

    Cohn, P. M. Reversible rings. London Math. Soc. 31 (1999), 641648.

  • [15]

    Huh, C., Lee, Y., and Smoktunowicz, A. Armendariz rings and semicommutative rings. Comm. Algebra 30, 2 (2002), 751761.

  • [16]

    Kim, N. K., and Lee, Y. Armendariz rings and reduced rings. J. Algebra 223, 2 (2000), 477488.

  • [17]

    Köthe, G. Die struktur der ringe, deren restklassenring nach dem radikal vollständig reduzibel ist. Math. Z. 32, 1 (1930), 161186.

  • [18]

    Lam, T.-Y. A first course in noncommutative rings, vol. 131. Springer Science & Business Media, New York Heidelberg Dordrecht London, 2013.

    • Search Google Scholar
    • Export Citation
  • [19]

    Loi, N. V. On the structure of semiprime involution rings. Contr. to General Algebra Proc. Krems Cons, North-Holland (1990), 153161.

  • [20]

    Rege, M. B., and Chhawchharia, S. Armendariz rings. Proc. Japan Acad. Ser. A Math. Sci. 73, 1 (1997), 1417.

  • [21]

    Rowen, L. H. Ring theory, vol. 1. Academic Press, San Diego, 1988.

  • [22]

    Stenström, B. Rings of quotients. Springer-Verlag, Berlin Heidelberg New York, 1975.

  • [23]

    Sung, H. J., and Yun, S. J. On semi-IFP rings. Korean J. Math. 23, 1 (2015), 3746.

  • [24]

    Szász, F. A. On minimal biideals of rings. Acta Math. Hung. (Szeged) 32 (1971), 333336.

  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • † Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)