In this note, we introduce the concept of semi-*-IFP, the involutive version of semi-IFP, which is a generalization of quasi-*-IFP and *-reducedness of *-rings. We study the basic structure and properties of *-rings having semi-*-IFP and give results for IFPs in rings with involution. Several results and counterexamples are stated to connect the involutive versions of IFP. We discuss the conditions for the involutive IFPs to be extended into *-subrings of the ring of upper triangular matrices. In *-rings with quasi-*-IFP, it is shown that Köthe’s conjecture has a strong affirmative solution. We investigate its related properties and the relationship between *-rings with quasi-*-IFP and *-Armendariz properties.
Aburawash, U. A. On *-simple involution rings with minimal *-biideals. Studia Sci. Math. Hungarica 32, 3 (1996), 455–458.
Aburawash, U. A. On embedding of involution rings. Math. Pannonica 8, 2 (1997), 245–250.
Aburawash, U. A. On involution rings. East-West J. Math. 2, 2 (2002), 109–126.
Aburawash, U. A. *-zero divisors and *-prime ideals. East-West J. Math. 12, 1 (2010), 27–31.
Aburawash, U. A., and Elgamudi, B. M. *-Armendariz property for involution rings. East-West J. Math. 21, 02 (2019), 171–181.
Aburawash, U. A., and Saad, M. On biregular, IFP and quasi-Baer *-rings. East-West J. Math. 16, 2 (2014), 182–192.
Aburawash, U. A., and Saad, M. *-baer property for rings with involution. Studia Scientiarum Mathematicarum Hungarica 53, 2 (2016), 243–255.
Aburawash, U. A., and Saad, M. Reversible and reflexive properties for rings with involution. Miskolc Math. Notes 20, 2 (2019), 635–650.
Armendariz, E. P. A note on extensions of Baer and p.p.-rings. J. Austral. Math. Soc. 18 (1974), 470–473.
Beidar, K. I., Márki, L., Mlitz, R., and Wiegandt, R. Primitive involution rings. Acta Math. Hung. 109, 4 (2005), 357–368.
Bell, H. E. Near-rings in which each element is a power of itself. Bull. Austral. Math. Soc. 2 (1970), 363–368.
Birkenmeier, G. F., and Groenewald, N. J. Prime ideals in rings with involution. Quaest. Math. 20, 4 (1997), 591–603.
Birkenmeier, G. F., Park, J. K., and Rizvi, S. T. Hulls of semiprime rings with applications to 𝐶*-algebras. J. Algebra 322 (2009), 327–352.
Cohn, P. M. Reversible rings. London Math. Soc. 31 (1999), 641–648.
Huh, C., Lee, Y., and Smoktunowicz, A. Armendariz rings and semicommutative rings. Comm. Algebra 30, 2 (2002), 751–761.
Kim, N. K., and Lee, Y. Armendariz rings and reduced rings. J. Algebra 223, 2 (2000), 477–488.
Köthe, G. Die struktur der ringe, deren restklassenring nach dem radikal vollständig reduzibel ist. Math. Z. 32, 1 (1930), 161–186.
Lam, T.-Y. A first course in noncommutative rings, vol. 131. Springer Science & Business Media, New York Heidelberg Dordrecht London, 2013.
Loi, N. V. On the structure of semiprime involution rings. Contr. to General Algebra Proc. Krems Cons, North-Holland (1990), 153–161.
Rege, M. B., and Chhawchharia, S. Armendariz rings. Proc. Japan Acad. Ser. A Math. Sci. 73, 1 (1997), 14–17.
Rowen, L. H. Ring theory, vol. 1. Academic Press, San Diego, 1988.
Stenström, B. Rings of quotients. Springer-Verlag, Berlin Heidelberg New York, 1975.
Sung, H. J., and Yun, S. J. On semi-IFP rings. Korean J. Math. 23, 1 (2015), 37–46.
Szász, F. A. On minimal biideals of rings. Acta Math. Hung. (Szeged) 32 (1971), 333–336.