Author:
Silvestru Sever Dragomir Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia
DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa

Search for other papers by Silvestru Sever Dragomir in
Current site
Google Scholar
PubMed
Close
Open access

For a continuous and positive function w(λ), λ > 0 and μ a positive measure on (0, ∞) we consider the following integral transform

Dw,μt:=0wλλ+t1dμλ,

where the integral is assumed to exist for t > 0.

We show among others that D(w, μ) is operator convex on (0, ∞). From this we derive that, if f : [0, ∞) → R is an operator monotone function on [0, ∞), then the function [f(0) -f(t)] t-1 is operator convex on (0, ∞). Also, if f : [0, ∞) → R is an operator convex function on [0, ∞), then the function f0+f+0tftt2 is operator convex on (0, ∞). Some lower and upper bounds for the Jensen’s difference

Dw,μA+Dw,μB2Dw,μA+B2

under some natural assumptions for the positive operators A and B are given. Examples for power, exponential and logarithmic functions are also provided.

  • [1]

    Bhatia, R. Matrix Analysis. Graduate Texts in Mathematics, 169. Springer-Verlag, New York, 1997. xii+347 pp. ISBN: 0-387-94846-5.

  • [2]

    Choi, M. D. Positive linear maps on C*-algebras. Canad. J. Math., 24 (1972), 520-529.

  • [3]

    Fujii, J. I. and Seo, Y. On parametrized operator means dominated by power ones. Sci. Math., 1 (1998) 301-306.

  • [4]

    Furuta, T. Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation. Linear Algebra Appl., 429 (2008) 972-980.

    • Search Google Scholar
    • Export Citation
  • [5]

    Furuta, T. Precise lower bound of f(A) - f(B) for A > B > 0 and non-constant operator monotone function f on (0, ∞). J. Math. Inequal., 9, 1 (2015), 47-52.

    • Search Google Scholar
    • Export Citation
  • [6]

    Furuta, T., Hot, T. M., Pecarić J. and Seo, Y. Mond-Pecarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space. Element, Zagreb, 2005.

    • Search Google Scholar
    • Export Citation
  • [7]

    Heinz, E. Beitrage zur Störungsteorie der Spektralzerlegung. Math. Ann., 123 (1951) 415-438.

  • [8]

    Löwner K. Über monotone MatrixFunktionen. Math. Z, 38 (1934) 177-216.

  • [9]

    Moslehian, M. S. and Najafi, H. Around operator monotone functions. Integr. Equ. Oper. Theory, 71 (2011), 575-582.

  • [10]

    Moslehian, M. S. and Najafi, H. An extension of the Löwner-Heinz inequality. Linear Algebra Appl, 437 (2012), 2359-2365.

  • [11]

    Zuo, H., Duan, G. Some inequalities of operator monotone functions. J. Math. Inequal., 8, 4 (2014), 777-781.

  • [12]

    Incomplete Gamma and Related Functions, Definitions. Digital Library of Mathematical Functions. NIST. https://dlmf.nist.gov/8.2

  • [13]

    Incomplete Gamma and Related Functions, Integral Representations. Digital Library of Mathematical Functions. NIST. https://dlmf.nist.gov/8.6

    • Search Google Scholar
    • Export Citation
  • [14]

    Generalized Exponential Integral. Digital Library of Mathematical Functions. NIST. https://dlmf.nist.gov/8.19#E1

  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • † István GYŐRI, University of Pannonia, Veszprém, Hungary
  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)