For a continuous and positive function w(λ), λ > 0 and μ a positive measure on (0, ∞) we consider the following integral transform
where the integral is assumed to exist for t > 0.
We show among others that D(w, μ) is operator convex on (0, ∞). From this we derive that, if f : [0, ∞) → R is an operator monotone function on [0, ∞), then the function [f(0) -f(t)] t-1 is operator convex on (0, ∞). Also, if f : [0, ∞) → R is an operator convex function on [0, ∞), then the function
under some natural assumptions for the positive operators A and B are given. Examples for power, exponential and logarithmic functions are also provided.
Bhatia, R. Matrix Analysis. Graduate Texts in Mathematics, 169. Springer-Verlag, New York, 1997. xii+347 pp. ISBN: 0-387-94846-5.
Choi, M. D. Positive linear maps on C*-algebras. Canad. J. Math., 24 (1972), 520-529.
Fujii, J. I. and Seo, Y. On parametrized operator means dominated by power ones. Sci. Math., 1 (1998) 301-306.
Furuta, T. Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation. Linear Algebra Appl., 429 (2008) 972-980.
Furuta, T. Precise lower bound of f(A) - f(B) for A > B > 0 and non-constant operator monotone function f on (0, ∞). J. Math. Inequal., 9, 1 (2015), 47-52.
Furuta, T., Hot, T. M., Pecarić J. and Seo, Y. Mond-Pecarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space. Element, Zagreb, 2005.
Heinz, E. Beitrage zur Störungsteorie der Spektralzerlegung. Math. Ann., 123 (1951) 415-438.
Löwner K. Über monotone MatrixFunktionen. Math. Z, 38 (1934) 177-216.
Moslehian, M. S. and Najafi, H. Around operator monotone functions. Integr. Equ. Oper. Theory, 71 (2011), 575-582.
Moslehian, M. S. and Najafi, H. An extension of the Löwner-Heinz inequality. Linear Algebra Appl, 437 (2012), 2359-2365.
Zuo, H., Duan, G. Some inequalities of operator monotone functions. J. Math. Inequal., 8, 4 (2014), 777-781.
Incomplete Gamma and Related Functions, Definitions. Digital Library of Mathematical Functions. NIST. https://dlmf.nist.gov/8.2
Incomplete Gamma and Related Functions, Integral Representations. Digital Library of Mathematical Functions. NIST. https://dlmf.nist.gov/8.6
Generalized Exponential Integral. Digital Library of Mathematical Functions. NIST. https://dlmf.nist.gov/8.19#E1