We study the path behavior of the symmetric walk on some special comb-type subsets of ℤ2 which are obtained from ℤ2 by generalizing the comb having finitely many horizontal lines instead of one.
BERTACCHI, D. Asymptotic behaviour of the simple random walk on the 2-dimensional comb. Electron. J. Probab. 11 (2006), 1184–1203.
BERTOIN, J. Iterated Brownian motion and stable (1/4) subordinator. Statist. Probab. Lett. 27(1996), 111–114.
CHUNG, K. L. On the maximum partial sums of sequences of independent random variables.Trans. Amer. Math. Soc. 64 (1948), 205–233.
CSÁKI, E., CSÖRGŐ, M., FÖLDES, A. AND RÉVÉSZ, P. How big are the increments of the local time of a Wiener process? Ann. Probab. 11,(1983), 593–608.
CSÁKI, E., CSÖRGŐ, M., FÖLDES, A. AND RÉVÉSZ, P. Global Strassen-type theorems for iterated Brownian motions. Stochastic Process. Appl. 59 (1995), 321–341.
CSÁKI, E., CSÖRGŐ, M., FÖLDES, A. AND RÉVÉSZ, P. Strong limit theorems for a simple random walk on the 2-dimensional comb. Electron. J. Probab. 14 (2009), 2371–2390.
CSÁKI, E., CSÖRGŐ, M., FÖLDES, A. AND RÉVÉSZ, P. Strong limit theorems for anisotropic random walks on Z2. Periodica Math. Hungar. 67 (2013), 71–94.
CSÁKI, E. AND FÖLDES, A. How big are the increments of the local time of a recurrent random walk? Z. Wahrsch. Verw. Gebiete 65 (1983), 307–322.
CSÁKI, E., FÖLDES, A. AND RÉVÉSZ, P. Some results and problems for anisotropic random walk on the plane. Asymptotic Laws and Methods in Stochastics. A volume in Honour of Miklós Csörgő. Fields Institute Communication 76 2015, pp. 55–76.
CSÁKI, E. AND FÖLDES, A. Random walks on comb-type subsets of Z2. Journal of Theoretical Probability 33 (2020), 2233–2257.
CSÁKI, E. AND FÖLDES, A. Strong Approximation of the Anisotropic Random Walk Revisited. Journal of Theoretical Probability 35 (2022), 1879–2895.
CSÁKI, E. AND RÉVÉSZ, P. Strong invariance for local time. Z. Wahrsch. verw. Gebiete 50 (1983), 5–25.
CSÖRGŐ, M. AND RÉVÉSZ, P. How big are the increments of a Wiener process? Ann. Probab. 7 (1979), 731–737.
HEYDE, C. C. On the asymptotic behavior of random walks on an anisotropic lattice. J. Statist. Physics 27 (1982), 721–730.
HEYDE, C. C. Asymptotics for two-dimensional anisotropic random walks. In: Stochastic Processes. Springer, New York, 1993, pp. 125–130.
HIRSCH, W. M. A strong law for the maximum cumulative sum of independent random variables. Comm. Pure Appl. Math. 18 (1965), 109–127.
KESTEN, H. An iterated logarithm law for the local time. Duke Math. J. 32 (1965), 447–456.
NANE, E. Laws of the iterated logarithm for a class of iterated processes. Statist. Probab. Lett. 79 (2009), 1744–1751.
RÉVÉSZ, P. Local time and invariance. Lecture Notes in Math. 861, 1981, pp. 128–145. Springer, New York.
RÉVÉSZ, P. Random Walk in Random and Non-Random Environments, 3rd ed. World Scientific, Singapore, 2013.
TÓTH, B. No more than three favorite sites for simple random walk. Ann. Probab. 29 (2001), 484–503.
WILLIAMS, D. Probability with Martingales. Cambridge University Press, Great Britain, 1991.