Authors:
Anna Bachstein School of Mathematical and Statistical Sciences, Clemson University

Search for other papers by Anna Bachstein in
Current site
Google Scholar
PubMed
Close
and
Wayne Goddard School of Mathematical and Statistical Sciences, Clemson University

Search for other papers by Wayne Goddard in
Current site
Google Scholar
PubMed
Close
Open access

For a graph G, we define the lower bipartite number LB(G) as the minimum order of a maximal induced bipartite subgraph of G. We study the parameter, and the related parameter bipartite domination, providing bounds both in general graphs and in some graph families. For example, we show that there are arbitrarily large 4-connected planar graphs G with LB(G) = 4 but a 5-connected planar graph has linear LB(G). We also show that if G is a maximal outerplanar graph of order n, then LB(G) lies between (n + 2)/3 and 2 n/3, and these bounds are sharp.

  • [1]

    Bachstein, A., Goddard, W., and Henning, M. A. Bipartite domination in graphs. Math. Pannon. (N.S.) 28 (2022), 118126.

  • [2]

    Byskov, J. M., Madsen, B. A., and Skjernaa, B. On the number of maximal bipartite subgraphs of a graph. J. Graph Theory 48 (2005), 127132.

    • Search Google Scholar
    • Export Citation
  • [3]

    Cho, E.-K., Choi, I., and Park, B. On independent domination of regular graphs. J. Graph Theory, to appear, .

  • [4]

    Fisk, S. A short proof of Chvátal’s watchman theorem. J. Combin. Theory Ser. B 24 (1978), 374.

  • [5]

    Garey, M. R. and Johnson, M. R. Computers and Intractability. Freeman, New York, 1979.

  • [6]

    Goddard, W. and Henning, M. A. Independent domination in graphs: A survey and recent results. Discrete Math. 313 (2013), 839854.

  • [7]

    Goddard, W. and Henning, M. A. Independent domination, colorings and the fractional idomatic number of a graph. Appl. Math. Comput. 382 (2020), 125340.

    • Search Google Scholar
    • Export Citation
  • [8]

    Goddard, W., Kuenzel, K. and Melville, E. Graphs in which all maximal bipartite subgraphs have the same order. Aequationes Math. 94 (2020), 12411255.

    • Search Google Scholar
    • Export Citation
  • [9]

    MacGillivray, G. and Seyffarth, K. Bounds for the independent domination number of graphs and planar graphs. J. Combin. Math. Combin. Comput. 49 (2004), 3355.

    • Search Google Scholar
    • Export Citation
  • [10]

    Negami, S. and Nakamoto, A. Triangulations on closed surfaces covered by vertices of given degree. Graphs Combin. 17 (2001), 529537.

  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • † Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)