We give all solutions of completely multiplicative functions ƒ , g, for which the equation Ag(n + 1) = Bƒ (n) + C holds for every n ∈ ℕ. We also study the equation G(p + 1) = F(p − 1) + D and we prove some results concerning it.
ELLIOTT, P. D. T. A. A conjecture of Kátai. Acta Arith. 26 (1974), 11–20.
ELLIOTT, P. D. T. A. On additive arithmetic function f(n) for which f(an + b) − f(cn + d) is bounded. J. Number Theory, 16 (1983), 285–310.
ELLIOTT, P. D. T. A. On representing integers as products of the p + 1. Monatshefte für Math. 97 (1984), 85–97.
ROGER, H.-B. Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression. Proc. London Math. Soc. 64 (3) (1992), 265–338.
KÁTAI, I. On sets characterizing number-theoretical functions. Acta Arith. 13 (1968), 315–320.
KÁTAI, I. On sets characterizing number-theoretical functions (II) (The set of “prime plus one”’s is a set of quasi-uniqueness). Acta Arithmetica 16 (1969), 1–4.
KÁTAI, I. KHANH, B. M. M., AND PHONG, B. M. On the equation F(n2 + m2 + k) = H(n)+ H(m)+ K. J. Math. Math. Sci. 1 (2022), 132–148.
KHANH, B. M. M. On the equation f(n2 + Dm2) = f(n)2 + Df(m)2. Ann. Univ. Sci. Budapest. Sect. Comput. 44 (2015), 59–68.
KHANH, B. M. M. On conjecture concerning the functional equation. Annales Univ. Sci. Budapest., Sect. Comp. 46 (2017), 123–135.
SPIRO, C. Additive uniqueness sets for arithmetic functions. J. Number Theory 42 (1992), 232–246.
TRIANTAFYLLOS, X. On Linnik's constant. Acta Arith. 150 (1) (2011), 65–91.
TRIANTAFYLLOS, X. Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression [The zeros of Dirichlet L-functions and the least prime in an arithmetic progression] (Dissertation for the degree of Doctor of Mathematics and Natural Sciences) (in German), 2011. Bonn: Universität Bonn, Mathematisches Institut.