Authors:
Imre Kátai ELTE, Pázmány P. Sétány. 1/C, H-1117 Budapest, Hungary

Search for other papers by Imre Kátai in
Current site
Google Scholar
PubMed
Close
and
Bui M. Phong ELTE, Pázmány P. Sétány. 1/C, H-1117 Budapest, Hungary

Search for other papers by Bui M. Phong in
Current site
Google Scholar
PubMed
Close
Open access

We give all solutions of completely multiplicative functions ƒ , g, for which the equation Ag(n + 1) = Bƒ (n) + C holds for every n ∈ ℕ. We also study the equation G(p + 1) = F(p − 1) + D and we prove some results concerning it.

  • [1]

    ELLIOTT, P. D. T. A. A conjecture of Kátai. Acta Arith. 26 (1974), 1120.

  • [2]

    ELLIOTT, P. D. T. A. On additive arithmetic function f(n) for which f(an + b) − f(cn + d) is bounded. J. Number Theory, 16 (1983), 285310.

    • Search Google Scholar
    • Export Citation
  • [3]

    ELLIOTT, P. D. T. A. On representing integers as products of the p + 1. Monatshefte für Math. 97 (1984), 8597.

  • [4]

    ROGER, H.-B. Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression. Proc. London Math. Soc. 64 (3) (1992), 265338.

    • Search Google Scholar
    • Export Citation
  • [5]

    KÁTAI, I. On sets characterizing number-theoretical functions. Acta Arith. 13 (1968), 315320.

  • [6]

    KÁTAI, I. On sets characterizing number-theoretical functions (II) (The set of “prime plus one”’s is a set of quasi-uniqueness). Acta Arithmetica 16 (1969), 14.

    • Search Google Scholar
    • Export Citation
  • [7]

    KÁTAI, I. KHANH, B. M. M., AND PHONG, B. M. On the equation F(n2 + m2 + k) = H(n)+ H(m)+ K. J. Math. Math. Sci. 1 (2022), 132148.

  • [8]

    KHANH, B. M. M. On the equation f(n2 + Dm2) = f(n)2 + Df(m)2. Ann. Univ. Sci. Budapest. Sect. Comput. 44 (2015), 5968.

  • [9]

    KHANH, B. M. M. On conjecture concerning the functional equation. Annales Univ. Sci. Budapest., Sect. Comp. 46 (2017), 123135.

  • [10]

    SPIRO, C. Additive uniqueness sets for arithmetic functions. J. Number Theory 42 (1992), 232246.

  • [11]

    TRIANTAFYLLOS, X. On Linnik's constant. Acta Arith. 150 (1) (2011), 6591.

  • [12]

    TRIANTAFYLLOS, X. Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression [The zeros of Dirichlet L-functions and the least prime in an arithmetic progression] (Dissertation for the degree of Doctor of Mathematics and Natural Sciences) (in German), 2011. Bonn: Universität Bonn, Mathematisches Institut.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • † Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)