Author:
Károly Bezdek Department of Mathematics and Statistics, University of Calgary, Canada
Department of Mathematics, University of Pannonia, Veszprém, Hungary

Search for other papers by Károly Bezdek in
Current site
Google Scholar
PubMed
Close
Open access

Let 𝔼𝑑 denote the 𝑑-dimensional Euclidean space. The 𝑟-ball body generated by a given set in 𝔼𝑑 is the intersection of balls of radius 𝑟 centered at the points of the given set. The author [Discrete Optimization 44/1 (2022), Paper No. 100539] proved the following Blaschke–Santaló-type inequalities for 𝑟-ball bodies: for all 0 < 𝑘 < 𝑑 and for any set of given 𝑑-dimensional volume in 𝔼𝑑 the 𝑘-th intrinsic volume of the 𝑟-ball body generated by the set becomes maximal if the set is a ball. In this note we give a new proof showing also the uniqueness of the maximizer. Some applications and related questions are mentioned as well.

  • [1]

    Bezdek, K., Lángi, Zs., Naszódi, M., and Papez, P. Ball-polyhedra. Discrete Comput. Geomg. 38, 2 (2007), 201230.

  • [2]

    Bezdek, K. From 𝑟-dual sets to uniform contractions. Aequationes Math. 92, 1 (2018), 123134.

  • [3]

    Bezdek, K. and Naszódi, M. The Kneser–Poulsen conjecture for special contractions. Discrete Comput. Geom. 60, 4 (2018), 967980.

  • [4]

    Bezdek, K. On the intrinsic volumes of intersections of congruent balls. Discrete Optim. 44, 1 (2022), Paper No. 100539 (7 pages).

  • [5]

    Borisenko, A. A. and Drach, K. D. Isoperimetric inequality for curves with curvature bounded below. Matematicheskie Mat. Zametki 95, 5 (2014), 656665; English translation: Math. Notes 95, 5–6 (2014), 590–598.

    • Search Google Scholar
    • Export Citation
  • [6]

    Fejes Tóth, L. Packing of 𝑟-convex discs. Studia Sci. Math. Hungar. 17, 1–4 (1982), 449452.

  • [7]

    Fodor, F., Kurusa, Á., and Vígh, V. Inequalities for hyperconvex sets. Adv. Geom. 16, 3 (2016), 337348.

  • [8]

    Gao, F., Hug, D., and Schneider, R. Intrinsic volumes and polar sets in spherical space. Math. Notae 41 (2003), 159176.

  • [9]

    Gardner, R. J. The Brunn–Minkowski inequality. Bull. Am. Math. Soc. 39, 3 (2002), 355405.

  • [10]

    Kupitz, Y. S., Martini, H., and Perles, M. A. Ball polytopes and the Vázsonyi problem. Acta Math. Hungar. 126, 1–2 (2010), 99163.

  • [11]

    Lángi, Zs., Naszódi, M., and Talata, I. Ball and spindle convexity with respect to a convex body. Aequationes Math. 85, 1–2 (2013), 4167.

    • Search Google Scholar
    • Export Citation
  • [12]

    Mayer, A. E. Eine Überkonvexität. Math. Z. 39, 1 (1935), 511531.

  • [13]

    Paouris, G. and Pivovarov, P. Random ball-polyhedra and inequalities for intrinsic volumes. Monatsh. Math. 182, 3 (2017), 709729.

  • [14]

    Schneider, R. Convex bodies: the Brunn–Minkowski theory. Encyclopedia of Mathematics and its Applications, Vol. 44. Cambridge University Press, Cambridge, 1993.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • † István GYŐRI, University of Pannonia, Veszprém, Hungary
  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)