Authors:
Maged G. Bin-Saad Department of Mathematics, Aden University, Aden, Yemen

Search for other papers by Maged G. Bin-Saad in
Current site
Google Scholar
PubMed
Close
,
Tuhtasin G. Ergashev National Research University “Tashkent Institute of Irrigation and Agricultural Mechanization Engineers”, 39, Kari-Niyazi Street, Tashkent, 100000, Uzbekistan

Search for other papers by Tuhtasin G. Ergashev in
Current site
Google Scholar
PubMed
Close
,
Dildora A. Ergasheva National Research University “Tashkent Institute of Irrigation and Agricultural Mechanization Engineers”, 39, Kari-Niyazi Street, Tashkent, 100000, Uzbekistan

Search for other papers by Dildora A. Ergasheva in
Current site
Google Scholar
PubMed
Close
, and
Anvarjon Hasanov Institute of Mathematics, 4 University Street, Tashkent, Uzbekistan
Institute of Mechanics and Seismic Resistance of Structures, Tashkent, Uzbekistan

Search for other papers by Anvarjon Hasanov in
Current site
Google Scholar
PubMed
Close
Open access

We define the order of the double hypergeometric series, investigate the properties of the new confluent Kampé de Fériet series, and build systems of partial differential equations that satisfy the new Kampé de Fériet series. We solve the Cauchy problem for a degenerate hyperbolic equation of the second kind with a spectral parameter using the high-order Kampé de Fériet series. Thanks to the properties of the introduced Kampé de Fériet series, it is possible to obtain a solution to the problem in explicit forms.

  • [1]

    Appell, P., Kampé De Fériet, J. Fonctions Hypergéometriques et Hypersphériques: Polynômes d’Hermite, Paris, Gauthier-Villars, 1926.

    • Search Google Scholar
    • Export Citation
  • [2]

    Bers, L. Mathematical Aspects of Subsonic and Transonic Gas Dynamics. New York: Dover Publications Inc. 1958.

  • [3]

    Burchnall, J. L. and Chaundy, T. W. Expansions of Appell double hypergeometric functions (II). The Quarterly Journal of Mathematics, Oxford 12 (1941), 112128.

    • Search Google Scholar
    • Export Citation
  • [4]

    Choi, J. and Rathie, A. K. General summation formulas for the Kampé de Fériet function. Montes Taures J. Pure Appl. Math. 1 (2019), 107128.

    • Search Google Scholar
    • Export Citation
  • [5]

    Choi, J. J., Milovanović, C. V., and Rathie, A. K. Generalized summation formulas for the Kampé de Fériet functions. Axioms 10, 318 (2021), 116.

    • Search Google Scholar
    • Export Citation
  • [6]

    Copson, E. T. On the Riemann–Green function. Archive for Rational Mechanics and Analysis 1, 1 (1957), 324348.

  • [7]

    Cvijović, D. and Miller, R. A reduction formula for the Kampé de Fériet function. Appl. Math. Lett. 23 (2010), 769771.

  • [8]

    Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G. Higher Transcendental Functions, vol 1., New York, Toronto and London, McGraw-Hill, 1953.

    • Search Google Scholar
    • Export Citation
  • [9]

    Ergashev, T. G. and Hasanov, A. Solutions of PDE systems for Kampé de Fériet type functions. Bull. Inst. Math. 3 (2018), 2328.

  • [10]

    Hái, N. T, Marichev, O. I., and Srivastava, H. M. A note on the convergence of certain families of multiple hypergeometric series. J. Math. Anal. Appl. 164 (1992), 104115.

    • Search Google Scholar
    • Export Citation
  • [11]

    Henrici, P. A Survey of I. N. Vekua’s Theory of Elliptic Partial Differential Equations With Analytic Coefficients. Zeitschrift fur angewandte mathematik und physik ZAMP 8, 3 (1957), 169203.

    • Search Google Scholar
    • Export Citation
  • [12]

    Horn, J. Über die Convergenz der hypergeometrischen Reihen zweier und dreier Veränder-lichen. Math. Ann. 34, 4 (1889), 544600.

  • [13]

    Horn, J. Hypergeometrische Funktionen zweier Veränderlichen. Math. Ann. 105, 1 (1931), 381407

  • [14]

    Humbert, P. The confluent hypergeometric functions of two variables. Proc. Roy. Soc. Edinburgh 41 (1920–21), 7396.

  • [15]

    Kampe de Fériet, J. Les fonctions hypergéométriques d’ordre supérieur à deux variables. C. R. Acad. Sci. Paris 173 (1921), 401404.

    • Search Google Scholar
    • Export Citation
  • [16]

    Kapilevič, M. B. On an equation of mixed elliptic-hyperbolic type. Matematicheskiy sbornik 30, 72 (1952), issue 1, 1138 (in Russian).

    • Search Google Scholar
    • Export Citation
  • [17]

    Karlsson, P. W. Some reduction formulas for double series and Kampé de Fériet functions. Niderl. Akad. Wetensch. Indag Math. 87 (1984), 3136.

    • Search Google Scholar
    • Export Citation
  • [18]

    Kim, Y. S. On certain reducibility of Kampé de Fériet function. Honam Math. J. 31 (2009), 167176.

  • [19]

    Liu, H. and Wang, W. Transformation and summation formulae for Kampé de Fériet series. J. Math. Anal. Appl. 409 (2014), 100110.

  • [20]

    Lohofer, G. Theory of an electromagnetically deviated metal sphere. 1: Abcorbed power. SIAM J. Appl. Math. 49 (1989), 567581.

  • [21]

    Maričev, O. I. Two Volterra equations with Horn functions. Dokl. Akad. Nauk SSSR 204, 3 (1972), 546549 (in Russian).

  • [22]

    Netterer, F. The Mathematics of Computerized Tomography, SIAM vol. 32, Philadelphia, Wiley, 2001.

  • [23]

    Niukkanen, A. W. Generalized hypergeometric series arising in physical and quantum chemical applications. J. Phys. A: Math. Gen. 16, 9 (1983), 18131825.

    • Search Google Scholar
    • Export Citation
  • [24]

    Rakha, M. A. and Rathie, A. K. Certain reduction and transformation formulas for Kampé de Fériet function. Commun. Korean Math. Soc. 37, 2 (2022), 473496.

    • Search Google Scholar
    • Export Citation
  • [25]

    Samko, S. G., Kilbas, A. A., and Marichev, O. I. Fractional Integrals and Derivatives. Theory and Applications. Amsterdam, Gordon and Breach Science Publishers, 1993.

    • Search Google Scholar
    • Export Citation
  • [26]

    Srivastava, H. M. and Daoust, M. C. A note on the convergence of Kampé de Fériet’s double hypergeometric series. Math. Nachr. 53 (1972), 151159.

    • Search Google Scholar
    • Export Citation
  • [27]

    Srivastava, H. M. and Karlsson, P. W. Multiple Gaussian Hypergeometric Series. New York, Chichester, Brisbane and Toronto, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, 1985.

    • Search Google Scholar
    • Export Citation
  • [28]

    Srivastava, H. M. and Panda, R. An integral representation for the product of two Jacobi polynomials. J. London Math. Soc. 12, 2 (1976), 419425.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • † István GYŐRI, University of Pannonia, Veszprém, Hungary
  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)