We define the order of the double hypergeometric series, investigate the properties of the new confluent Kampé de Fériet series, and build systems of partial differential equations that satisfy the new Kampé de Fériet series. We solve the Cauchy problem for a degenerate hyperbolic equation of the second kind with a spectral parameter using the high-order Kampé de Fériet series. Thanks to the properties of the introduced Kampé de Fériet series, it is possible to obtain a solution to the problem in explicit forms.
Appell, P., Kampé De Fériet, J. Fonctions Hypergéometriques et Hypersphériques: Polynômes d’Hermite, Paris, Gauthier-Villars, 1926.
Bers, L. Mathematical Aspects of Subsonic and Transonic Gas Dynamics. New York: Dover Publications Inc. 1958.
Burchnall, J. L. and Chaundy, T. W. Expansions of Appell double hypergeometric functions (II). The Quarterly Journal of Mathematics, Oxford 12 (1941), 112–128.
Choi, J. and Rathie, A. K. General summation formulas for the Kampé de Fériet function. Montes Taures J. Pure Appl. Math. 1 (2019), 107–128.
Choi, J. J., Milovanović, C. V., and Rathie, A. K. Generalized summation formulas for the Kampé de Fériet functions. Axioms 10, 318 (2021), 1–16.
Copson, E. T. On the Riemann–Green function. Archive for Rational Mechanics and Analysis 1, 1 (1957), 324–348.
Cvijović, D. and Miller, R. A reduction formula for the Kampé de Fériet function. Appl. Math. Lett. 23 (2010), 769–771.
Erdelyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G. Higher Transcendental Functions, vol 1., New York, Toronto and London, McGraw-Hill, 1953.
Ergashev, T. G. and Hasanov, A. Solutions of PDE systems for Kampé de Fériet type functions. Bull. Inst. Math. 3 (2018), 23–28.
Hái, N. T, Marichev, O. I., and Srivastava, H. M. A note on the convergence of certain families of multiple hypergeometric series. J. Math. Anal. Appl. 164 (1992), 104–115.
Henrici, P. A Survey of I. N. Vekua’s Theory of Elliptic Partial Differential Equations With Analytic Coefficients. Zeitschrift fur angewandte mathematik und physik ZAMP 8, 3 (1957), 169–203.
Horn, J. Über die Convergenz der hypergeometrischen Reihen zweier und dreier Veränder-lichen. Math. Ann. 34, 4 (1889), 544–600.
Horn, J. Hypergeometrische Funktionen zweier Veränderlichen. Math. Ann. 105, 1 (1931), 381–407
Humbert, P. The confluent hypergeometric functions of two variables. Proc. Roy. Soc. Edinburgh 41 (1920–21), 73–96.
Kampe de Fériet, J. Les fonctions hypergéométriques d’ordre supérieur à deux variables. C. R. Acad. Sci. Paris 173 (1921), 401–404.
Kapilevič, M. B. On an equation of mixed elliptic-hyperbolic type. Matematicheskiy sbornik 30, 72 (1952), issue 1, 11–38 (in Russian).
Karlsson, P. W. Some reduction formulas for double series and Kampé de Fériet functions. Niderl. Akad. Wetensch. Indag Math. 87 (1984), 31–36.
Kim, Y. S. On certain reducibility of Kampé de Fériet function. Honam Math. J. 31 (2009), 167–176.
Liu, H. and Wang, W. Transformation and summation formulae for Kampé de Fériet series. J. Math. Anal. Appl. 409 (2014), 100–110.
Lohofer, G. Theory of an electromagnetically deviated metal sphere. 1: Abcorbed power. SIAM J. Appl. Math. 49 (1989), 567–581.
Maričev, O. I. Two Volterra equations with Horn functions. Dokl. Akad. Nauk SSSR 204, 3 (1972), 546–549 (in Russian).
Netterer, F. The Mathematics of Computerized Tomography, SIAM vol. 32, Philadelphia, Wiley, 2001.
Niukkanen, A. W. Generalized hypergeometric series arising in physical and quantum chemical applications. J. Phys. A: Math. Gen. 16, 9 (1983), 1813–1825.
Rakha, M. A. and Rathie, A. K. Certain reduction and transformation formulas for Kampé de Fériet function. Commun. Korean Math. Soc. 37, 2 (2022), 473–496.
Samko, S. G., Kilbas, A. A., and Marichev, O. I. Fractional Integrals and Derivatives. Theory and Applications. Amsterdam, Gordon and Breach Science Publishers, 1993.
Srivastava, H. M. and Daoust, M. C. A note on the convergence of Kampé de Fériet’s double hypergeometric series. Math. Nachr. 53 (1972), 151–159.
Srivastava, H. M. and Karlsson, P. W. Multiple Gaussian Hypergeometric Series. New York, Chichester, Brisbane and Toronto, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, 1985.
Srivastava, H. M. and Panda, R. An integral representation for the product of two Jacobi polynomials. J. London Math. Soc. 12, 2 (1976), 419–425.