We present generalizations of the Pinelis extension of Stolarsky’s inequality and its reverse. In particular, a new Stolarsky-type inequality is obtained. We study the properties of the linear functional related to the new Stolarsky-type inequality, and finally apply these new results in the theory of fractional integrals.
Abramovich, S. Pečarić, J., Varošanec, S. Further extension of Stolarsky’s inequality with general weights. Math. Pannon. 10 (1999), 249–256.
Daraby, B. Investigation of a Stolarsky type inequality for integrals in pseudo-analysis. Fract. Calc. Appl. Anal., 13(5) (2010), 467–473.
Katugampola, U. N. New approach to a generalized fractional integral. Appl. Math. Comput., 218 (2011), 860–865.
Maligranda, L., Pečarić, J., Persson, L. E. Stolarsky’s inequality with general weights. Proc. Amer. Math. Soc. 123(7) (1995), 2113–2117.
Pečarić, J. On Stolarsky’s quotient. Makedon. Akad. Nauk. Umet. Oddel. Mat.-Tehn. Nauk. 14(2) (1993), 55–60.
Pečarić, J. A reverse Stolarsky’s inequality. Amer. Math. Monthly, 101(6) (1994), 566–568.
Pečarić, J., Varošanec, S. Remarks on Gauss–Winckler’s and Stolarsky’s inequality. Utilitas Math. 48(1995), 233–241.
Pinelis, I. Multilinear direct and reverse Stolarsky inequalities. Math. Inequal. Appl. 5(4) (2002), 671–691.
Stolarsky, K. From Wythoff’s Nim to Chebyshev’s inequality. Amer. Math. Monthly, 98(10) (1991), 889–900.
Varošanec, S., Pečarić, J. Gauss’ and related inequalities. Z. Anal. Anwend. 14(1) (1995) 175–183.
Varošanec, S., Pečarić, J., Šunde, J. Some discrete inequalities. Z. Anal. Anwend. 15(4) (1996), 1025–1032.