Let 𝑛 ∈ ℕ. An element (x1, … , x𝑛) ∈ En is called a norming point of T ∈
Norm(T) = {(x1, … , xn) ∈ En ∶ (x1, … , xn) is a norming point of T}.
Norm(T) is called the norming set of T. We classify Norm(T) for every T ∈
Aron, R. M., Finet, C., and Werner, E. Some remarks on norm-attaining n-linear forms. Function spaces (Edwardsville, IL, 1994), 19–28. Lecture Notes in Pure and Appl. Math., 172, Dekker, New York, 1995.
Bishop, E. and Phelps, R. A proof that every Banach space is subreflexive. Bull. Amer. Math. Soc. 67 (1961), 97–98.
Choi, Y. S. and Kim, S. G. Norm or numerical radius attaining multilinear mappings and polynomials. J. London Math. Soc. (2) 54 (1996), 135–147.
Dineen, S. Complex Analysis on Infinite Dimensional Spaces. Springer-Verlag, London (1999).
Jiménez Sevilla, M. and Payá, R. Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces. Studia Math. 127 (1998), 99–112.
Kim, S. G. The norming set of a polynomial in P(2 𝑙2 ∞). Honam Math. J. 42 3 (2020), 569–576.
Kim, S. G. The norming set of a bilinear form on 𝑙2 ∞. Comment. Math. 60 1-2 (2020), 37–63.
Kim, S. G. The norming set of a symmetric 3-linear form on the plane with the 𝑙1-norm. New Zealand J. Math. 51 (2021), 95–108.
Kim, S. G. The norming sets of L(2 𝑙2 1) and L𝑠(2 𝑙31). Bull. Transilv. Univ. Brasov, Ser. III: Math. Comput. Sci. 64 (2) (2022), 125–150.
Kim, S. G. The norming sets of L(2ℝ2 ℎ(w)). Acta Sci. Math. (Szeged), 89 (1-2) (2023), 61–79.