Author:
Sung Guen Kim Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea

Search for other papers by Sung Guen Kim in
Current site
Google Scholar
PubMed
Close
Open access

Let 𝑛 ∈ ℕ. An element (x1, … , x𝑛) ∈ En is called a norming point of TL(nE) if ‖x1‖ = ⋯ = ‖xn‖ = 1 and |T (x1, … , xn)| = ‖T‖, where L (nE) denotes the space of all continuous n-linear forms on E. For TL(nE), we define

Norm(T) = {(x1, … , xn) ∈ En ∶ (x1, … , xn) is a norming point of T}.

Norm(T) is called the norming set of T. We classify Norm(T) for every TL(2𝑑(1, w)2), where 𝑑(1, w)2 = ℝ2 with the octagonal norm of weight 0 < w < 1 endowed with x,yd*1,w=maxx,y,x+y1+w.

  • [1]

    Aron, R. M., Finet, C., and Werner, E. Some remarks on norm-attaining n-linear forms. Function spaces (Edwardsville, IL, 1994), 19–28. Lecture Notes in Pure and Appl. Math., 172, Dekker, New York, 1995.

    • Search Google Scholar
    • Export Citation
  • [2]

    Bishop, E. and Phelps, R. A proof that every Banach space is subreflexive. Bull. Amer. Math. Soc. 67 (1961), 9798.

  • [3]

    Choi, Y. S. and Kim, S. G. Norm or numerical radius attaining multilinear mappings and polynomials. J. London Math. Soc. (2) 54 (1996), 135147.

    • Search Google Scholar
    • Export Citation
  • [4]

    Dineen, S. Complex Analysis on Infinite Dimensional Spaces. Springer-Verlag, London (1999).

  • [5]

    Jiménez Sevilla, M. and Payá, R. Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces. Studia Math. 127 (1998), 99112.

    • Search Google Scholar
    • Export Citation
  • [6]

    Kim, S. G. The norming set of a polynomial in P(2 𝑙2 ). Honam Math. J. 42 3 (2020), 569576.

  • [7]

    Kim, S. G. The norming set of a bilinear form on 𝑙2 . Comment. Math. 60 1-2 (2020), 3763.

  • [8]

    Kim, S. G. The norming set of a symmetric 3-linear form on the plane with the 𝑙1-norm. New Zealand J. Math. 51 (2021), 95108.

  • [9]

    Kim, S. G. The norming sets of L(2 𝑙2 1) and L𝑠(2 𝑙31). Bull. Transilv. Univ. Brasov, Ser. III: Math. Comput. Sci. 64 (2) (2022), 125150.

    • Search Google Scholar
    • Export Citation
  • [10]

    Kim, S. G. The norming sets of L(22 ℎ(w)). Acta Sci. Math. (Szeged), 89 (1-2) (2023), 6179.

  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • † István GYŐRI, University of Pannonia, Veszprém, Hungary
  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)