Asymptotic uniform upper density, shortened as a.u.u.d., or simply upper density, is a classical notion which was first introduced by Kahane for sequences in the real line.
Syndetic sets were defined by Gottschalk and Hendlund. For a locally compact group 𝐺, a set 𝑆 ⊂ 𝐺 is syndetic, if there exists a compact subset 𝐶 ⋐ 𝐺 such that 𝑆𝐶 = 𝐺. Syndetic sets play an important role in various fields of applications of topological groups and semigroups, ergodic theory and number theory. A lemma in the book of Fürstenberg says that once a subset 𝐴 ⊂ ℤ has positive a.u.u.d., then its difference set 𝐴 − 𝐴 is syndetic.
The construction of a reasonable notion of a.u.u.d. in general locally compact Abelian groups (LCA groups for short) was not known for long, but in the late 2000’s several constructions were worked out to generalize it from the base cases of ℤ𝑑 and ℝ𝑑. With the notion available, several classical results of the Euclidean setting became accessible even in general LCA groups.
Here we work out various versions in a general locally compact Abelian group 𝐺 of the classical statement that if a set 𝑆 ⊂ 𝐺 has positive asymptotic uniform upper density, then the difference set 𝑆 − 𝑆 is syndetic.
Beurling, A. Interpolation for an interval in R1. In: The Collected Works of Arne Beurling, in: Harmonic Analysis, vol. 2. Birkhauser Boston, Boston, MA, 1989.
Beurling, A. Balayage of Fourier-Stieltjes transforms. in: The Collected Works of Arne Beurling, in: Harmonic Analysis, vol. 2, Birkhauser Boston, Boston, MA, 1989.
Berdysheva, E. and Révész, Sz. Gy. Delsarte’s extremal problem and packing on locally compact Abelian groups. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XXIV (2023), 1007–1052.
Cohn, H., Kumar, A., Miller, S. D., Radchenko, D., and Viazovska, M. The sphere packing problem in dimension 24. Ann. of Math. (3)85, 3 (2017), 1017–1033.
Fürstenberg, H. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton, 1981.
Erdős, P. and Stone, A. H. On the sum of two Borel sets. Proc. Amer. Math. Soc. 25 (1970), 304–306.
Gottschalk, W. H. and Hedlund, G. A. Topological dynamics. American Mathematical Society Colloquium Publications 36, American Mathematical Society, Providence, R. I., 1955. vii+151 pp.
Gröchenig, K., Kutyniok, G., and Seip, K. Landau’s necessary density conditions for LCA groups. J. Funct. Anal. 255 (2008), 1831–1850.
Groemer, H. Existenzsätze für Lagerungen im Euklidischen Raum. (German.) Math. Z. 81 (1963), 260–278.
Hegyvári, N. On iterated difference sets in groups. Period. Math. Hungar. 43 1-2, (2001), 105–110.
Hewitt, E. and Ross, K. A. Abstract harmonic analysis, I. Die Grundlehren der mathematischen Wissenchaften, Band 115. Springer Verlag, Berlin, Göttingen, Heidelberg, 1963.
Hewitt, E. and Ross, K. A. Abstract harmonic analysis, II. Die Grundlehren der mathematischen Wissenchaften, Band 152. Springer Verlag, Berlin, Heidelberg, New York, Budapest, 1970.
Kahane, J.-P. Sur les fonctions moyenne-périodiques bornées. Ann. Inst. Fourier 7 (1957), 293–314.
Kahane, J.-P. Sur quelques problèmes d’unicité et de prolongement, relatifs aux fonctions approchables par des sommes d’exponentielles. Thése de doctorat, Université de Paris, Série A, no. 2633, 1954, 102 pages.
Kahane, J.-P. Sur quelques problèmes d’unicité et de prolongement, relatifs aux fonctions approchables par des sommes d’exponentielles. Ann. Inst. Fourier 5 (1954), 39–130.
Kolountzakis, M. N., Sz. Gy. Révész, Turán’s extremal problem for positive definite functions on groups. J. London Math. Soc. 74 (2006), 475–496.
Landau, H. J. Necessary density conditions for sampling and interpolation of certain entire functions. Acta Math. 117 (1967), 37–52.
Révész, Sz. Gy. On asymptotic uniform upper density in locally compact Abelian groups, preprint. See on arXive as arXiv 0904.1567, (2009).
Révész, Sz. Gy. Turán’s extremal problem on locally compact Abelian groups. Anal. Math. 37 (2011), 15–50.
Révész, Sz. Gy. Extremal problems for positive definite functions and polynomials. Thesis for the “Doctor of the Academy” degree, April 2009. See at http://www.renyi.hu/~revesz/preprints.html.
Révész, Sz. Gy. On asymptotic uniform upper density in locally compact Abelian groups. Real Analysis Exchange 37, 1 (2012), 24–31. (In the Supplement 35th Summer Symposium Conference Reports.)
Rogers, C. A. A linear Borel set whose difference set is not a Borel set. Bull. London Math. Soc. 2 (1970), 41–42.
Rudin, W. Fourier analysis on groups. Interscience Tracts in Pure and Applied Mathematics, No. 12. Interscience Publishers (a division of John Wiley and Sons), New York-London 1962 ix+285 pp.
Ruzsa, I. Z. On difference-sequences. Acta Arith. XXV (1974), 151–157.
Totik, V. On comparision of asymptotic uniform upper densities in non-discrete LCA groups. e-mail to Sz. Révész, 25 July 2010; also in the Referee report on the thesis “Extremal problems for positive definite functions and polynomials” by Sz. Gy. Révész, Hungarian academy of Sciences, Budapest, 2011.
Viazovska, M. S. The sphere packing problem in dimension 8. Ann. of Math. 185, 3 (2017), 991–1015.