This paper serves as a kick-off to address the question of how to define and investigate the stability of bi-continuous semigroups. We will see that the mixed topology is the key concept in this framework.
Alexiewicz, A. On the two-norm convergence. Stud. Math. 14 (1953), 49–56.
Alexiewicz, A., and Semadeni, Z. A generalization of two norm spaces. Linear functionals. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 6 (1958), 135–139.
Alexiewicz, A., and Semadeni, Z. Linear functionals on two-norm spaces. Stud. Math. 17 (1958), 121–140.
Arora, S., and Glück, J. Spectrum and convergence of eventually positive operator semigroups. Semigroup Forum 103, 3 (2021), 791–811.
Babalola, V. A. Semigroups of operators on locally convex spaces. Trans. Am. Math. Soc. 199 (1974), 163–179.
Bátkai, A., Eisner, T., and Latushkin, Y. The spectral mapping property of delay semigroups. Complex Anal. Oper. Theory 2, 2 (2008), 273–283.
Batty, C. J. K., Chill, R., and Tomilov, Y. Strong stability of bounded evolution families and semigroups. J. Funct. Anal. 193, 193 (2002), 116–139.
Batty, C. J. K., Chill, R., and van Neerven, J. Asymptotic behaviour of 𝐶0-semigroups with bounded local resolvents. Math. Nachr. 219 (2000), 65–83.
Batty, C. J. K., and Duyckaerts, T. Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ. 8, 8 (2008), 765–780.
Batty, C. J. K., van Neerven, J., and Räbiger, F. Local spectra and individual stability of uniformly bounded 𝐶0-semigroups. Trans. Am. Math. Soc. 350, 350 (1998), 2071–2085.
Budde, C. Positive Desch–Schappacher perturbations of bi-continuous semigroups on AM-spaces. Acta Sci. Math. 87, 87-4 (2021), 571–594.
Budde, C. Positive Miyadera-Voigt perturbations of bi-continuous semigroups. Positivity 25, 25 (2021), 1107–1129.
Budde, C., and Farkas, B. Intermediate and extrapolated spaces for bi-continuous operator semigroups. J. Evol. Equ. 19, 19 (2019), 321–359.
Budde, C., and Farkas, B. A Desch–Schappacher perturbation theorem for bi-continuous semigroups. Math. Nachr. 293, 293 (2020), 1053–1073.
Budde, C., and Fijavž, M. K. Bi-continuous semigroups for flows on infinite networks. Netw. Heterog. Media 16, 16 (2021), 553–567.
Budde, C., and Wegner, S.-A. A Lumer-Phillips type generation theorem for bi-continuous semigroups. Z. Anal. Anwend. 41, 41-2 (2022), 65–80.
Choe, Y. H. 𝐶0-semigroups on a locally convex space. J. Math. Anal. Appl. 106 (1985), 293–320.
Cooper, J. B. Saks spaces and applications to functional analysis, second ed., vol. 139 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes], 116.
Daners, D., Glück, J., and Kennedy, J. B. Eventually positive semigroups of linear operators. J. Math. Anal. Appl. 433, 433 (2016), 1561–1593.
De Wilde, M. Limite inductive d’espaces linéaires semi-normes. Bull. Soc. R. Sci. Liège 32 (1963), 476–484.
Dembart, B. On the theory of semigroups of operators on locally convex spaces. J. Funct. Anal. 16 (1974), 123–160.
Diestel, J., and Uhl, J. J. j. Vector measures, vol. 15 of Math. Surv. American Mathematical Society (AMS), Providence, RI, 1977.
Eisner, T. Stability of operators and operator semigroups, vol. 209 of Oper. Theory: Adv. Appl. Basel: Birkhäuser, 2010.
Eisner, T., Farkas, B., Nagel, R., and Serény, A. Weakly and almost weakly stable 𝐶0-semigroups. Int. J. Dyn. Syst. Differ. Equ. 1, 1 (2007), 44–57.
Engel, K.-J., and Nagel, R. One-parameter semigroups for linear evolution equations, vol. 194 of Grad. Texts Math. Berlin: Springer, 2000.
Farkas, B. Perturbations of Bi-Continuous Semigroups. PhD thesis, Eötvös Loránd University, 2003.
Farkas, B. Perturbations of bi-continuous semigroups. Studia Math. 161, 161 (2004), 147–161.
Farkas, B. Perturbations of bi-continuous semigroups with applications to transition semigroups on 𝐶𝑏(𝐻). Semigroup Forum 68, 68 (2004), 87–107.
Farkas, B. Adjoint bi-continuous semigroups and semigroups on the space of measures. Czech. Math. J. 61, 61 (2011), 309–322.
Glück, J., and Wolff, M. P. H. Long-term analysis of positive operator semigroups via asymptotic domination. Positivity 23, 23 (2019), 1113–1146.
Goldstein, J. A. Semigroups of linear operators and applications. Oxford Math. Monogr. Oxford University Press, Oxford, 1985.
Goldys, B., and Kocan, M. Diffusion semigroups in spaces of continuous functions with mixed topology. J. Differ. Equations 173, 173 (2001), 17–39.
Goldys, B., Nendel, M., and Röckner, M. Operator semigroups in the mixed topology and the infinitesimal description of Markov processes. Preprint, arXiv:2204.07484.
Jacob, B., and Wegner, S.-A. Asymptotics of evolution equations beyond Banach spaces. Semigroup Forum 91, 91 (2015), 347–377.
Komura, T. Semigroups of operators in locally convex spaces. J. Funct. Anal. 2 (1968), 258–296.
Kraaij, R. Strongly continuous and locally equi-continuous semigroups on locally convex spaces. Semigroup Forum 92, 92 (2016), 158–185.
Kruse, K. Mixed topologies on saks spaces of vector-valued functions. Preprint, arXiv:2207.04681, 2022.
Kruse, K., Meichsner, J., and Seifert, C. Subordination for sequentially equicontinuous equibounded 𝐶0-semigroups. J. Evol. Equ. 21, 21 (2021), 2665–2690.
Kruse, K., and Schwenninger, F. L. On equicontinuity and tightness of bi-continuous semigroups. J. Math. Anal. Appl. 509, 509 (2022), 27. Id/No 125985.
Kühnemund, F. Bi-Continuous Semigroups on Spaces with Two Topologies: Theory and Applications. PhD thesis, Eberhard-Karls-Universität Tübingen, 2001.
Kühnemund, F. A Hille–Yosida theorem for bi-continuous semigroups. Semigroup Forum 67, 67 (2003), 205–225.
Pazy, A. Semigroups of linear operators and applications to partial differential equations, vol. 44 of Appl. Math. Sci. Springer, Cham, 1983.
Rudin, W. Functional analysis, second ed. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991.
Snipes, R. F. C-sequential and S-bornological topological vector spaces. Math. Ann. 202 (1973), 273–283.
van Neerven, J. The asymptotic behaviour of semigroups of linear operators, vol. 88 of Oper. Theory: Adv. Appl. Basel: Birkhäuser, 1996.
van Neerven, J. M. A. M., Straub, B., and Weis, L. On the asymptotic behaviour of a semigroup of linear operators. Indag. Math., New Ser. 6, 6 (1995), 453–476.
Wiweger, A. Linear spaces with mixed topology. Stud. Math. 20 (1961), 47–68.