Author:
Jonathan David Farley Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA

Search for other papers by Jonathan David Farley in
Current site
Google Scholar
PubMed
Close
Open access

Grätzer and Lakser asked in the 1971 Transactions of the American Mathematical Society if the pseudocomplemented distributive lattices in the amalgamation class of the subvariety generated by 𝟐𝑛 ⊕ 𝟏 can be characterized by the property of not having a *-homomorphism onto 𝟐𝑖 ⊕ 𝟏 for 1 < 𝑖 < 𝑛.

In this article, their question from 1971 is answered.

  • [1]

    Balbes, R., and Dwinger, P. Distributive Lattices. University of Missouri Press, Columbia, Missouri, 1974.

  • [2]

    Bergman, C. Amalgamation classes of some distributive varieties. Algebra Universalis 20 (1985), 143166.

  • [3]

    Bergman, C., McKenzie, R., and Nagy, Zs. How to cancel a linearly ordered exponent. Colloquia Mathematica Societatis János Bolyai 29. Universal Algebra, Esztergom (Hungary), 1977. (North-Holland, Amsterdam-New York, 1982), 8793.

    • Search Google Scholar
    • Export Citation
  • [4]

    Cornish, W. H. Ordered topological spaces and the coproduct of bounded distributive lattices. Colloquium Mathematicum 36 (1976), 2735.

    • Search Google Scholar
    • Export Citation
  • [5]

    Davey, B. A., and Priestley, H. A. Partition-induced natural dualities for varieties of pseudo-complemented distributive lattices. Discrete Mathematics 113 (1993), 4158.

    • Search Google Scholar
    • Export Citation
  • [6]

    Davey, B. A., and Priestley, H. A. Introduction to Lattices and Order, second edition. Cambridge University Press, Cambridge, 2002.

  • [7]

    Farley, J. D. Priestley Duality for Order-Preserving Maps into Distributive Lattices. Order 13 (1996), 6598.

  • [8]

    Fuchs, L., Beeton, B., and Czédli, G. Reminiscences about George Grätzer and E. Tamás Schmidt. Algebra Universalis 59 (2008), 310.

    • Search Google Scholar
    • Export Citation
  • [9]

    Grätzer, G. Lattice Theory: Foundation. Birkhäuser, Basel, Switzerland, 2011.

  • [10]

    Grätzer, G., and Lakser, H. The structure of pseudocomplemented distributive lattices. II: Congruence extension and amalgamation. Transactions of the American Mathematical Society 156 (1971), 343358.

    • Search Google Scholar
    • Export Citation
  • [11]

    Hart, K. Answer beneath: Extending maps from a discrete set to a Stone–Čech compactification while retaining an injectivity condition. Retrieved October 22, 2023, from https://mathoverflow.net/questions/456254/extending-maps-from-a-discrete-set-to-a-stone-%C4%8Cech-compactification-while-retain

    • Search Google Scholar
    • Export Citation
  • [12]

    Koubek, V., and Sichler, J. On Priestley duals of products. Cah. Topol. Géom. Différ. Catég. 32 (1991), 243256.

  • [13]

    Lakser, H. The structure of pseudocomplemented distributive lattices. I: Subdirect decomposition. Trans. Amer. Math. Soc. 156 (1971), 335342.

    • Search Google Scholar
    • Export Citation
  • [14]

    Lee, K. B. Equational Classes of Distributive Pseudo-complemented Lattices. Canad. J. Math. 22 (1970), 881891.

  • [15]

    Ma, D. Stone-Cech Compactification of the Integers—Basic Facts. Retrieved October 22, 2023, from https://dantopology.wordpress.com/2012/10/01/stone-cech-compactification-of-the-integers-basic-facts

    • Search Google Scholar
    • Export Citation
  • [16]

    McKenzie, R. N., McNulty, G. F., and Taylor, W. F. Algebras, Lattices, Varieties: Volume I. Wadsworth & Brooks/Cole, Monterey, California, 1987.

    • Search Google Scholar
    • Export Citation
  • [17]

    Munkres, J. Topology, second edition. Pearson Education Limited, Essex, England, 2014.

  • [18]

    Priestley, H. A. Representation of distributive lattices by means of ordered Stone spaces. Bull. Lond. Math. Soc. 2 (1970), 186190.

  • [19]

    Priestley, H. A. Stone lattices: a topological approach. Fund. Math. 84 (1974), 127143.

  • [20]

    Priestley, H. A. The Construction of Spaces Dual to Pseudocomplemented Distributive Lattices. Q. J. Math. 26 (1975), 215228.

  • [21]

    Taylor, W. Residually Small Varieties. Algebra Universalis 2 (1972), 3353.

  • [22]

    Vaidyanathan, P. Answer beneath: 𝑓, 𝑔 continuous from 𝑋 to 𝑌 . if they are agree [sic] on a dense set 𝐴 of 𝑋 then they agree on 𝑋. Retrieved October 23, 2023, from https://math.stackexchange.com/questions/543962/f-g-continuous-from-x-to-y-if-they-are-agree-on-a-dense-set-a-of-x-th

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • † Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)