We apply a recent general zero density theorem of us (valid for a large class of complex functions) to improve earlier density theorems of Heath-Brown and Paul–Sankaranarayanan for Dedekind zeta functions attached to a number field 𝐾 of degree 𝑛 with 𝑛 > 2.
Bourgain, J. Decoupling, exponential sums and the Riemann zeta function, J. Amer. Math. Soc. 30, 1 (2017), 205–224.
Halász, G. Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta Math. Hungar. 19, 3-4 (1968), 365–404.
Halász, G. and Turán, P. On the distribution of roots of Riemann zeta and allied functions, I, J. Number Theory 1, (1969), 121–137.
Heath-Brown, D. R. On the density of the zeros of the Dedekind Zeta-function, Acta Arith. 33, (1977), 169–181.
Heath-Brown, D. R. The growth rate of the Dedekind zeta-function on the critical line, Acta Arith. 49, (1988), 323–339.
Landau, E. Einführung in die elementare und analytische Theorie der algebraischen Zahlen und Ideale, Teubner, Leipzig, 1918.
Paul, B. and Sankaranarayanan, A. On the error term and zeros of Dedekind zeta function, J. Number Theory 215, (2020), 98–119.
Pintz, J. Remark on a general zero density theorem. Math. Pannon. 29 /NS 3/ 2, (2023), 238–243.
Pintz, J. On a general density theorem. Acta Arith., to appear.
Sokolovsky, A. V. A theorem on the zeros of Dedekind’s Zeta-function and the distance between ‘neighbouring’ prime ideals, Acta Arith. 13, (1968), 321–334 (in Russian).
Titchmarsh, E. C. The theory of the Riemann zeta-function, Oxford, Clarendon Press, 1951.
Turán, P. On the zeros of Riemann’s zeta-function, Collected Papers of Paul Turán, Ed. P. Erdős, Vol. 1, pp. 748–759, Akadémiai Kiadó, Budapest, 1954.
Turán, P. On a new method of analysis and its applications. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1984. xvi+584 pp. With the assistance of G. Halász and J. Pintz. With a foreword by Vera T. Sós.