Let 𝑓 be a normalized primitive cusp form of even integral weight for the full modular group Γ = 𝑆𝐿(2, ℤ). In this paper, we investigate upper bounds for the error terms related to the average behavior of Fourier coefficients 𝜆𝑓 ⊗𝑓 ⊗⋯⊗𝑙𝑓 (𝑛) of 𝑙-fold product 𝐿-functions, where 𝑓 ⊗ 𝑓 ⊗ ⋯ ⊗𝑙 𝑓 denotes the 𝑙-fold product of 𝑓. These results improves and generalizes the recent developments of Venkatasubbareddy and Sankaranarayanan [41]. We also provide some other similar results related to the error terms of general product 𝐿-functions.
Atkin, A. O. L. and Lehner, J. Hecke operators on Γ0(𝑚). Math. Ann. 185 (1970), 134–160.
Bourgain, J. Decoupling, exponential sums and the Riemann zeta function. J. Amer. Math. Soc. 30 (2017), 205–224.
Cogdell, J. and Michel, P. On the complex moments of symmetric power 𝐿-functions at 𝑠 = 1. Int. Math. Res. Not. 31 (2004), 1561–1617.
Clozel, L. and Thorne, J. A. Level-raising and symmetric power functoriality. I. Compos. Math 150 (2014), 729–748.
Clozel, L. and Thorne, J. A. Level-raising and symmetric power functoriality. II. Ann. Math. 181 (2015), 303–359.
Clozel, L. and Thorne, J. A. Level-raising and symmetric power functoriality. III. Duke Math. J. 166 (2017), 325–402.
Deligne, P. La Conjecture de Weil. I. Publ. Math. Inst. Hautes. Études. Sci. 43 (1974), 273–307.
Gelbart, S. and Jacqet, H. A relation between automorphic representations of 𝐺𝐿(2) and 𝐺𝐿(3). Ann. Sci. École Norm. Sup. 11 (1978), 471–542.
Garrett, P. B. and Harris, H. Special values of triple product 𝐿-functions. Amer. J. Math. 115, 1 (1993), 161–240.
Huang, B. R. On the Rankin–Selberg problem. Math. Ann. 381 (2021), 1217–1251.
Hua, G. D. Mean value estimates of pairwise maxima of Hecke eigenvalues. Adv. Math. (China) 50, 1 (2021), 117–124.
Hua, G. D. Average behaviour of higher moments of cusp form coefficients. Funct. Approximatio. Comment. Math. 67, 1 (2022), 69–76.
Hua, G. D. The average behaviour of Hecke eigenvalues over certain sparse sequence of positive integers. Res. Number Theory 8 (2022), no. 95, 20 pp.
Huang, B. R. On the Rankin–Selberg problem, II. Q. J. Math. (2023) .
Ivić, A. Exponential pairs and the zeta function of Riemann. Stud. Sci. Math. Hungar. 15 (1980), 157–181.
Good, A. The square mean of Dirichlet series associated with cusp forms. Mathematika 29, 2 (1982), 278–295.
Gun, S. and Murty, R. M. Generalization of an identity of Ramanujan. J. Ramanujan Math. Soc. 31, 2 (2016), 125–135.
Iwaniec, H. Topics in Classical Automorphic Forms. Graduate Studies in Mathematics, Amer. Math. Soc., Vol. 17, Providence, RI, 1997.
Ivić, A. The Riemann Zeta-Function. Theory and Applications. Reprint of the 1985 Original, Wiley, New York, 2003.
Iwaniec, H. and Kowalski, E. Analytic Number Theory. Amer. Math. Soc. Colloq. Publ., Vol. 53, Amer. Math. Soc, Providence, RI, 2004.
Jutila, M. Lectures on a Method in the Theory of Exponential Sums. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Vol. 80, Springer, Berlin, 1987.
Jiang, Y. J. and Lü, G. S. On the higher mean over arithmetic progressions of Fourier coefficients of cusp form. Acta Arith. 166 (3) (2014), 231–252.
Kim, H. Functoriality for the exterior square of 𝐺𝐿4 and symmetric fourth of 𝐺𝐿2, Appendix 1 by D. Ramakrishan, Appendix 2 by H. Kim and P. Sarnak. J. Am. Math. Soc. 16 (2003), 139–183.
Kim, H. and Shahidi, F. Cuspidality of symmetric power with applications. Duke Math. J. 112 (2002), 177–197.
Kim, H. and Shahidi, F. Functorial products for 𝐺𝐿2 × 𝐺𝐿3 and functorial symmetric cube for 𝐺𝐿2, with an appendix by C. J. Bushnell and G. Heniart. Ann. of Math. 155 (2002), 837–893.
Kowalski, E., Lin, Y. X., and Michel, P. Rankin–Selberg coefficients in large arithmetic progressions. Sci. China Math. 66 (2023), 2767–2778.
Liu, J. Y. and Ye, Y. B. Perron’s formula and the prime number theorem for automorphic 𝐿-function, Special Issue: In honor of Leon Simon, Part 1 of 2. Pure Appl. Math. Q. 3, 2 (2007), 481–497.
Lau, Y.-K. and Lü, G. S. Sums of Fourier coefficients of cusp forms. Q. J. Math. 62 (2011), 687–716.
Lü, G. S. and Sankaranarayanan, A. On the coefficients of triple product 𝐿-functions. Rocky Mountain J. Math 47, 2 (2017), 553–570.
Luo, S., Lao, H. X. and Zou, A. Y. Asymptotics for the Dirichlet coefficients of symmetric power 𝐿-functions. Acta Arith. 199, 3 (2021), 253–268.
Lin, Y. X., Nunes, R. and Qi, Z. Strong subconvexity for self-dual GL(3) 𝐿-functions. Int. Math. Res. Not. 13 (2023), 11453–11470.
Liu, H. F. On the asymptotic distribution of Fourier coefficients of cusp forms. Bull. Braz. Math. Soc. (N.S.) 54, 2) (2023), 17 pp.
Newton, J. and Thorne, J. A. Symmetric power functoriality for holomorphic modular forms. Publ. Math. Inst. Hautes Études Sci. 134 (2021), 1–116.
Newton, J. and Thorne, J. A. Symmetric power functoriality for holomorphic modular forms. II. Publ. Math. Inst. Hautes Études Sci. 134 (2021), 117–152.
Perelli, A. General 𝐿-functions. Ann. Mat. Pura Appl. 130 (1982), 287–306.
Rankin, R. A. Contributions to the theory of Ramanujan’s function 𝜏(𝑛) and similar arithmetical functions. I. The zeros of the function ∑ n = 1 ∞ τ n / n s on the line ℜ(𝑠) = 13/2. II. The order of the Fourier coefficients of the integral modular forms. Proc. Camb. Philos. Soc. 35 (1939), 351–372.
Ramachandra, K. and Sankaranarayanan, A. Notes on the Riemann zeta-function. J. Indian Math. Soc. (N.S.) 57, 1-4 (1991), 67–77.
Selberg, A. Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulforman nahe verbunden ist. Arch. Math. Naturvid. 43 (1940), 47–50.
Shahidi, F. Third symmetric power 𝐿-functions for 𝐺𝐿(2). Compos. Math. 70 (1989), 245–273.
Venkatasubbareddy, K. and Sankaranarayanan, A. On the average behaviour of coefficients related to triple product 𝐿-function. Funct. Approximatio, Comment. Math. 68, 2 (2023), 195–206.
Venkatasubbareddy, K. and Sankaranarayanan, A. On the tetra, penta, hexa, hepta and octa product 𝐿-functions. Eur. J. Math. 9, 1, Paper No. 17, (2023), 24 pp.
Xu, C. R. General asymptotic formula of Fourier coefficients of cusp forms over sum of two squares. J. Number Theory 236 (2022), 214–229.
Zhai, S. Average behavior of Fourier coefficients of cusp forms over sum of two squares. J. Number Theory 133 (2013), 3862–3876.