Authors:
Ding Nan School of Mathematics Science, Inner Mongolia Normal University, Huhehot, Inner Mongolia 010022, China

Search for other papers by Ding Nan in
Current site
Google Scholar
PubMed
Close
and
Hasi Wulan School of Mathematics Science, Inner Mongolia Minzu University, Tongliao, Inner Mongolia 028000, China
Department of Mathematics, Shantou University, Shantou, Guangdong 515063, China

Search for other papers by Hasi Wulan in
Current site
Google Scholar
PubMed
Close
Open access

In this paper, some basic characterizations of a weighted Bloch space with the differentiable strictly positive weight 𝜔 on the unit disc are given, including the growth, the higher order or free derivative descriptions, and integral characterizations of functions in the space.

  • [1]

    Aleman, A. and Constantin, O. Spectra of integration operators on weighted Bergman spaces. J. Anal. Math. 109 (2009), 199231.

  • [2]

    Aleman, A., Pott, S., and Reguera, M. Characterizations of a limiting class 𝐵 of Békollé-Bonami weights. Rev. Mat. Iberoam 35, 6 (2019), 16771692.

    • Search Google Scholar
    • Export Citation
  • [3]

    Aulaskari, R., Lappan, P., Xiao, J., and Zhao, R. On 𝛼-Bloch spaces and multipliers of Dirichlet spaces. J. Math. Anal. Appl. 209 (1997), 103121.

    • Search Google Scholar
    • Export Citation
  • [4]

    Aulaskari, R., Xiao, J., and Zhao, R. On subspaces and subsets of BMOA and UBC. Analysis 15 (1995), 101121.

  • [5]

    Baernstein, A. Analytic functions of bounded mean oscillation. Aspects of Contemporary Complex Analysis. Academic Press, 336. 1980.

  • [6]

    Bahajji-El Idrissi, H. and El-Fallah, O. Blaschke products and zero sets in weighted Dirichlet spaces. Potential Analysis 53 (2020), 12991316.

    • Search Google Scholar
    • Export Citation
  • [7]

    Duren, P. Theory of 𝐻𝑝 Spaces. Academic Press, New York, 1970.

  • [8]

    Dyakonov, K. Weighted Bloch spaces, 𝐻𝑝, and BMOA. J. Lond. Math. Soc. II. Ser 65 (2002), 411417.

  • [9]

    Galanopoulos, P. On B log to Q p log pullbacks. J. Math. Anal. Appl. 337 (2008), 712725.

  • [10]

    Garnett, J. Bounded analytic functions. Springer, New York, 2007.

  • [11]

    Lotz, H. Uniform convergence of operators on 𝐿 and similar spaces. Math. Z. 190 (1985), 207220.

  • [12]

    Luecking, D. Representation and duality in weighted spaces of analytic functions. Indiana Univ. Math. J. 34 (1985), 319336.

  • [13]

    Noshiro, K. On the theory of schlicht functions. J. Fac. Sci. Hokkaido Univ. 2 (1934–1935), 129155.

  • [14]

    Pommerenke, Ch. Schlichte Funktionen und analytische Funktionen von beschränkten mittlerer Oszillation. Comment. Math. Helv. 52 (1977), 591602.

    • Search Google Scholar
    • Export Citation
  • [15]

    Sarason, D. Functions of vanishing mean oscillation. Trans. Amer. Math. Soc. 207 (1975), 391405.

  • [16]

    Warschawski, S. On the higher derivatives at the boundary in conformal mapping. Trans. Amer. Math. Soc. 38 (1935), 310340.

  • [17]

    Xiao, J. Holomorphic Q classes. Lecture Notes in Mathematics 1767. Springer-Verlag, Berlin, 2001.

  • [18]

    Xiao, J. Geometric Q𝑝 functions. Frontiers in Mathematics. Birkhäser Verlag, Basel, 2006.

  • [19]

    Xiao, J. The Q𝑝 Carleson measure problem. Adv. Math. 217 (2008), 20752088.

  • [20]

    Zhao, R. On a general family of function spaces. Acad. Sci. Fenn. Math. Diss. 105 (1996).

  • [21]

    Zhu, K. Operator Theory in Function Spaces, Second Edition. Mathematical Surveys and Monographs 138. Amer. Math. Soc, Providence, 2007.

  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • † Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)