Authors:
Anjali Department of Mathematics, Netaji Subhas University of Technology, Sector 3, Dwarka, New Delhi 110078, India

Search for other papers by Anjali in
Current site
Google Scholar
PubMed
Close
and
Vijay Gupta Department of Mathematics, Netaji Subhas University of Technology, Sector 3, Dwarka, New Delhi 110078, India

Search for other papers by Vijay Gupta in
Current site
Google Scholar
PubMed
Close
Open access

Very recently, the authors in [5] proposed the exponential-type operator connected with x43 and studied its convergence estimates. In the present research, we extend the study and obtain the general form of its 𝑝-th order moment; 𝑝 ∈ ℕ ∪ {0}. Further, we establish the simultaneous approximation for the operator under consideration.

  • [1]

    Agrawal, P. N., and Thamer, K. J. Approximation of unbounded functions by a new sequence of linear positive operators. J. Math. Anal. Appl. 225 (1998), 660672.

    • Search Google Scholar
    • Export Citation
  • [2]

    Gavrea, I., and Ivan, M. An answer to a conjecture on Bernstein operators. J. Math. Anal. Appl. 390, 1 (2012), 8692.

  • [3]

    Govil, N. K., Gupta, V., and Saybaş, D. Certain new classes of Durrmeyer type operators. Appl. Math. Comput. 225 (2013), 195203.

  • [4]

    Gupta, V. Approximation with certain exponential operators. Rev. Real Acad. Cienc. Exactas Fis. Natur. Ser. A Mat. (RACSAM) 114, 51 (2020), 115.

    • Search Google Scholar
    • Export Citation
  • [5]

    Gupta, V., and Anjali. A new type of exponential operator. Filomat 37, 14 (2023), 46294638.

  • [6]

    Gupta, V., Pellicer, M. L., and Srivastava, H. M. Convergence estimates of a family of approximation operators of exponential type. Filomat 34, 13 (2020), 43294341.

    • Search Google Scholar
    • Export Citation
  • [7]

    Gupta, V., Popescu, C. M., and Radu, V. A. Convergence of certain hybrid operators. Rocky Mountain J. Math. 51, 4 (2021), 12491258.

  • [8]

    Herzog, M. Semi-exponential operators. Symmetry 13 (2021).

  • [9]

    Ismail, M., and May, C. P. On a family of approximation operators. J. Math. Anal. Appl. 63 (1978), 446462.

  • [10]

    Ispir, N. On modified Baskakov operators on weighted spaces. Turkish J. Math. 25 (2001), 355365.

  • [11]

    Popescu, C. M., and Radu, V. A. Approximation properties of exponential type operators connected to 𝑝(𝑥) = 2𝑥3/2. Math. Found. Comput. 6, 3 (2023), 520534.

    • Search Google Scholar
    • Export Citation
  • [12]

    Radu, V. A. Quantitative estimates for some modified Bernstein-Stancu operators. Miskolc Math. Notes 19, 1 (2018), 517525.

  • [13]

    Tyliba, A., and Wachnicki, E. On some class of exponential type operators. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 45 (2005), 5973.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • † Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)