Authors:
Muhammad T. Tajuddin Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21568, Egypt

Search for other papers by Muhammad T. Tajuddin in
Current site
Google Scholar
PubMed
Close
,
Usama A. Aburawash Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21568, Egypt

Search for other papers by Usama A. Aburawash in
Current site
Google Scholar
PubMed
Close
, and
Muhammad Saad Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21568, Egypt

Search for other papers by Muhammad Saad in
Current site
Google Scholar
PubMed
Close
Open access

This paper introduces and examines the concept of a *-Rickart *-ring, and proves that every Rickart *-ring is also a *-Rickart *-ring. A necessary and sufficient condition for a *-Rickart *-ring to be a Rickart *-ring is also provided. The relationship between *-Rickart *-rings and *-Baer *-rings is investigated, and several properties of *-Rickart *-rings are presented. The paper demonstrates that the property of *-Rickart extends to both the center and *-corners of a *-ring, and investigates the extension of a *-Rickart *-ring to its polynomial *-ring. Additionally, *-Rickart *-rings with descending chain condition on *-biideals are studied, and all *-Rickart (*-Baer) *-rings with finitely many elements are classified.

  • [1]

    Aburawash, U. A. Semiprime involution rings and chain conditions. General algebra, Proc. Conf., Vienna/Austria 1990, Contrib. Gen. Algebra 7 (1991), 711.

    • Search Google Scholar
    • Export Citation
  • [2]

    Aburawash, U. A. On *-minimal *-ideals and *-biideals in involution rings. Acta Math. Hungar. 129, 4 (2010), 297-302.

  • [3]

    Aburawash, U. A., and ELgamudi, B. M. *-Armendariz property for involution rings. East-West J. Math. 21, 2 (2019), 171181.

  • [4]

    Aburawash, U. A., and Saad, M. On biregular, IFP and quasi-Baer *-rings. East-West J. Math. 16 (01 2014), 182192.

  • [5]

    Aburawash, U. A., and Saad, M. *-Baer property for rings with involution. Stud. Sci. Math. Hung. 53, 2 (2016), 243255.

  • [6]

    Aburawash, U. A., and Saad, M. Reversible and reflexive properties for rings with involution. Miskolc Math. Notes 20 (2019), 635650.

  • [7]

    Aburawash, U. A., and Sola, K. B. *-Zero divisors and *-prime ideals. East-West J. Math. 12, 1 (2010), 2731.

  • [8]

    Armendariz, E. P. A note on extensions of Baer and P. P.-rings. J. Aust. Math. Soc. 18 (1974), 470473.

  • [9]

    Beidar, K. I., and Wiegandt, R. Rings with involution and chain conditions on bi-ideals. Russian Math. Surveys 48, 5 (1993), 159160.

  • [10]

    Bell, H. E. Near-rings in which each element is a power of itself. Bull. Aust. Math. Soc. 2 (1970), 363368.

  • [11]

    Berberian, S. K. Baer *-rings, vol. 195 of Grundlehren Math. Wiss. Springer-Verlag, Berlin Heidelberg, 1972.

  • [12]

    Berberian, S. K. Baer rings and baer *-rings, 1988. https://web.ma.utexas.edu/mp_arc/c/03/03-181.pdf.

  • [13]

    Birkenmeier, G. F., and Park, J. K. Self-adjoint ideals in Baer *-rings. Comm. Algebra 28, 9 (2000), 42594268.

  • [14]

    Birkenmeier, G. F., Park, J. K., and Rizvi, S. T. Extensions of rings and modules. New York, NY: Birkhäuser/Springer, 2013.

  • [15]

    Domokos, M. Goldie’s theorems for involution rings. Comm. Algebra 22, 2 (1994), 371380.

  • [16]

    Kim, N. K., and Lee, Y. Armendariz rings and reduced rings. J. Algebra 223 (01 2000), 477488.

  • [17]

    Mendes, D. I. C. On *-essential ideals and biideals of rings with involution. Quaest. Math. 26, 1 (2003), 6772.

  • [18]

    Mlitz, R. Radicals of rings with involution. Bul. Acad. Ştiinţe Repub. Mold. Mat. 2004, 1(44) (2004), 6775.

  • [19]

    Ramakotaiah, D., and Rao, G. K. IFP near-rings. J. Aust. Math. Soc., Ser. A 27 (1978), 365370.

  • [20]

    Rowen, L. H. Ring theory. Volume I. Academic Press, Inc., Boston, MA etc., 1988.

  • [21]

    Saad, M., and Aburawash, U. A. IFP for rings with involution. Math. Pannon. (N.S.) 29, 1 (2023), 127137.

  • [22]

    Thakare, N. K., and Waphare, B. N. Baer *-rings with finitely many elements. J. Combin. Math. Combin. Comput. 26 (1998), 161164.

  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • † Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)