Author:
Sung Guen Kim Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea

Search for other papers by Sung Guen Kim in
Current site
Google Scholar
PubMed
Close
Open access

Let 𝑛 β‰₯ 2. A continuous 𝑛-linear form 𝑇 on a Banach space 𝐸 is called norm-peak if there is a unique (π‘₯1, … , π‘₯𝑛) ∈ 𝐸𝑛 such that β•‘π‘₯1β•‘ = … = β•‘π‘₯𝑛║ = 1 and for the multilinear operator norm it holds ‖𝑇 β€– = |𝑇 (π‘₯1, … , π‘₯𝑛)|.

Let 0 ≀ πœƒ ≀ Ο€2Β andΒ Β l∞,ΞΈ2= ℝ2 with the rotated supremum norm β€–(π‘₯, 𝑦)β€–(∞,πœƒ) = max {|π‘₯ cos πœƒ + 𝑦 sin πœƒ|, |π‘₯ sin πœƒ βˆ’ 𝑦 cos πœƒ|}.

In this note, we characterize all norm-peak multilinear forms on l∞,ΞΈ2. As a corollary we characterize all norm-peak multilinear forms on lp2 = ℝ2 with the 𝓁𝑝-norm for 𝑝 = 1, ∞.

  • [1]

    Acosta, M. D. On multilinear mappings attaining their norms. Studia Math. 131, 2 (1998), 155–165.

  • [2]

    Aron, R. M., Finet, C., and Werner, E. Some remarks on norm-attaining 𝑛-linear forms. Function spaces (Edwardsville, IL, 1994), 19–28. Lecture Notes in Pure and Appl. Math. 172, Dekker, New York, 1995.

    • Search Google Scholar
    • Export Citation
  • [3]

    Bishop, E. and Phelps, R. A proof that every Banach space is subreflexive. Bull. Amer. Math. Soc. 67 (1961), 97–98.

  • [4]

    Choi, Y. S. and Kim, S. G. Norm or numerical radius attaining multilinear mappings and polynomials. J. London Math. Soc. 54, 2 (1996), 135–147.

    • Search Google Scholar
    • Export Citation
  • [5]

    Dineen, S. Complex Analysis on Infinite Dimensional Spaces. Springer-Verlag, London, 1999.

  • [6]

    Finet, C. and Georgiev, P. Optimization by 𝑛-homogeneous polynomial perturbations. Bull. Soc. Roy. Sci. LiΓ¨ge 70 (2001), 251–257.

    • Search Google Scholar
    • Export Citation
  • [7]

    JimΓ©nez Sevilla, M. and PayΓ‘, R. Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces. Studia Math. 127 (1998), 99–112.

    • Search Google Scholar
    • Export Citation
  • [8]

    Kim, S. G. The norming set of a bilinear form on 𝑙2 ∞. Comment. Math. 60, 1-2 (2020), 37–63.

  • [9]

    Kim, S. G. The norming set of a polynomial in 𝒫(2𝑙2 ∞). Honam Math. J. 42, 3 (2020), 569–576.

  • [10]

    Kim, S. G. The norming set of a symmetric bilinear form on the plane with the supremum norm. Mat. Stud. 55, 2 (2021), 171–180.

  • [11]

    Kim, S. G. The norming set of a symmetric 3-linear form on the plane with the 𝑙1-norm. New Zealand J. Math. 51 (2021), 95–108.

    • Search Google Scholar
    • Export Citation
  • [12]

    Kim, S. G. The norming sets of β„’(2𝑙2 1) and ℒ𝑠(2𝑙3 1). Bull. Transilv. Univ. Brasov, Ser. III: Math. Comput. Sci. 2(64), 2 (2022), 125–150.

    • Search Google Scholar
    • Export Citation
  • [13]

    Kim, S. G. The norming sets of β„’(2ℝ2 β„Ž(𝑀)). Acta Sci. Math. (Szeged) 89, 1-2 (2023), 61–79.

  • [14]

    Lindenstrauss, J. On operators which attain their norm. Israel J. Math. 1 (1963), 139–148.

  • [15]

    PayΓ‘, R. and Saleh, Y. New sufficient conditions for the denseness of norm attaining multilinear forms. Bull. London Math. Soc. 34 (2002), 212–218.

    • Search Google Scholar
    • Export Citation
  • [16]

    Saleh, Y. Norm attaining multilinear forms on 𝐿1(πœ‡). Int. J. Math. Math. Sci. Id 328481 (2008).

  • [17]

    Stegall, C. Optimization of functions on certain subsets of Banach spaces. Math. Ann. 236 (1978), 171–176.

  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • † István GYŐRI, University of Pannonia, Veszprém, Hungary
  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Ε½eljka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)