Let π β₯ 2. A continuous π-linear form π on a Banach space πΈ is called norm-peak if there is a unique (π₯1, β¦ , π₯π) β πΈπ such that βπ₯1β = β¦ = βπ₯πβ = 1 and for the multilinear operator norm it holds βπ β = |π (π₯1, β¦ , π₯π)|.
Let 0 β€ π β€
In this note, we characterize all norm-peak multilinear forms on
Acosta, M. D. On multilinear mappings attaining their norms. Studia Math. 131, 2 (1998), 155β165.
Aron, R. M., Finet, C., and Werner, E. Some remarks on norm-attaining π-linear forms. Function spaces (Edwardsville, IL, 1994), 19β28. Lecture Notes in Pure and Appl. Math. 172, Dekker, New York, 1995.
Bishop, E. and Phelps, R. A proof that every Banach space is subreflexive. Bull. Amer. Math. Soc. 67 (1961), 97β98.
Choi, Y. S. and Kim, S. G. Norm or numerical radius attaining multilinear mappings and polynomials. J. London Math. Soc. 54, 2 (1996), 135β147.
Dineen, S. Complex Analysis on Infinite Dimensional Spaces. Springer-Verlag, London, 1999.
Finet, C. and Georgiev, P. Optimization by π-homogeneous polynomial perturbations. Bull. Soc. Roy. Sci. LiΓ¨ge 70 (2001), 251β257.
JimΓ©nez Sevilla, M. and PayΓ‘, R. Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces. Studia Math. 127 (1998), 99β112.
Kim, S. G. The norming set of a bilinear form on π2 β. Comment. Math. 60, 1-2 (2020), 37β63.
Kim, S. G. The norming set of a polynomial in π«(2π2 β). Honam Math. J. 42, 3 (2020), 569β576.
Kim, S. G. The norming set of a symmetric bilinear form on the plane with the supremum norm. Mat. Stud. 55, 2 (2021), 171β180.
Kim, S. G. The norming set of a symmetric 3-linear form on the plane with the π1-norm. New Zealand J. Math. 51 (2021), 95β108.
Kim, S. G. The norming sets of β(2π2 1) and βπ (2π3 1). Bull. Transilv. Univ. Brasov, Ser. III: Math. Comput. Sci. 2(64), 2 (2022), 125β150.
Kim, S. G. The norming sets of β(2β2 β(π€)). Acta Sci. Math. (Szeged) 89, 1-2 (2023), 61β79.
Lindenstrauss, J. On operators which attain their norm. Israel J. Math. 1 (1963), 139β148.
PayΓ‘, R. and Saleh, Y. New sufficient conditions for the denseness of norm attaining multilinear forms. Bull. London Math. Soc. 34 (2002), 212β218.
Saleh, Y. Norm attaining multilinear forms on πΏ1(π). Int. J. Math. Math. Sci. Id 328481 (2008).
Stegall, C. Optimization of functions on certain subsets of Banach spaces. Math. Ann. 236 (1978), 171β176.