Authors:
Mandi Orlić Bachler University of Applied Sciences, Av. V. Holjevca 15, Zagreb 10000, Croatia

Search for other papers by Mandi Orlić Bachler in
Current site
Google Scholar
PubMed
Close
and
Zoran Kaliman Faculty of Physics, University of Rijeka, Radmile Matejčić 2, Rijeka, 51000, Croatia

Search for other papers by Zoran Kaliman in
Current site
Google Scholar
PubMed
Close
Open access

This article describes a general analytical derivation of the Fuss’ relation for bicentric polygons with an odd number of vertices. In particular, we derive the Fuss’ relations for the bicentric tridecagon and the bicentric pentadecagon.

  • [1]

    Dorrie, H. 100 Great Problems of Elementary Mathematics. Dover, New York, 1965.

  • [2]

    Josefsson, M. Calculations Concerning the Tangent Lengths and Tangency Chords of a Tangential Quadrilateral. Forum Geometricorum 10 (2010), 119130.

    • Search Google Scholar
    • Export Citation
  • [3]

    Kaliman, Z., and Orlić, M. Mathematica in analytical derivation of Fuss’ relation. 6th International Conference APLIMAT 2007, Bratislava III (2007), 457462.

    • Search Google Scholar
    • Export Citation
  • [4]

    Orlić, M., and Kaliman, Z. Problem tetivno-tangencijalnog četverokuta. Matematičko-fizički list 238, 2 (2009), 8691.

  • [5]

    Orlić, M., Kaliman, Z., and Orlić, N. Using Mathematica in alternative derivation of Fuss’ relation for bicentric quadrilateral. 6th International Conference APLIMAT 2007, Bratislava III (2007), 475480.

    • Search Google Scholar
    • Export Citation
  • [6]

    Orlić, M., Kaliman, Z., and Orlić, N. Analytical Derivation of the Fuss’ Relations for Bicentric Hendecagon and Dodecagon. Acta Physica Polonica A 128 (2015), 475480.

    • Search Google Scholar
    • Export Citation
  • [7]

    Radić, M. Certain inequalities concerning bicentric quadrilaterals, hexagons and octagons. Journal of Inequalities in Pure and Applied Mathematics 6(1) (2005), Art. 1.

    • Search Google Scholar
    • Export Citation
  • [8]

    Radić, M. Certain relations between triangles and bicentric hexagon. RAD HAZU, Matematičke znanosti 503 (2009), 2140.

  • [9]

    Radić, M. An improvwd method for establishing Fuss’ relations for bicentric n-gons where 𝑛 ≥ 4 is an even integer. RAD HAZU, Matematičke znanosti 18, 519 (2014), 145170.

    • Search Google Scholar
    • Export Citation
  • [10]

    Radić, M. Functions of triples of positive real numbers and their use in study of bicentric polygons II. Math. Commun. 19 (2014), 139157.

    • Search Google Scholar
    • Export Citation
  • [11]

    Radić, M., and Trinajstić, N. On A System Of Equations Related To Bicentric Polygons. Applied Mathematics E-Notes 8 (2008), 916.

  • [12]

    Radić, M., and Zatezalo, A. About some kinds of bicentric polygons and concerning relations. Math. Maced. 4 (2006), 4773.

  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • † Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)