Author:
Jawher Khmiri Faculty of Science of Monastir, Department of Mathematics, 5000 Monastir, Tunisia

Search for other papers by Jawher Khmiri in
Current site
Google Scholar
PubMed
Close
Open access

In this paper, we define the discretized Voros–Li coefficients associated to the zeta function on function fields of genus 𝑔 over a finite fields 𝔽𝑞. Furthermore, we give a finite sum representation, an integral formula and an asymptotic formula for these coefficients.

  • [1]

    Bllaca, K. H., and Mazhouda, K. Centralized variant of the Li criterion on functions fields. Finite Fields and Their Applications 72 (June 2021), 101800.

    • Search Google Scholar
    • Export Citation
  • [2]

    Bllaca, K. H., and Mazhouda, K. Explicit formula on function fields and application: Li coefficients. Annali di Matematica Pura ed Applicata (1923-) 200, 5 (Jan. 2021), 18591869.

    • Search Google Scholar
    • Export Citation
  • [3]

    Bombieri, E., and Lagarias, J. C. Complements to Li’s criterion for the Riemann hypothesis. J. Number Theory 77, 2 (Aug. 1999), 274287.

    • Search Google Scholar
    • Export Citation
  • [4]

    Lagarias, J. Li coefficients for automorphic 𝐿-functions. Ann. l’inst. Fourier 57, 5 (2007), 16891740.

  • [5]

    Li, X.-J. The positivity of a sequence of numbers and the Riemann hypothesis. J. Number Theory 65, 2 (Aug. 1997), 325333.

  • [6]

    Mazhouda, K., and Smajlović, L. On relations equivalent to the generalized Riemann hypothesis for the selberg class. Functiones et Approximatio Commentarii Mathematici 56, 1 (Mar. 2017).

    • Search Google Scholar
    • Export Citation
  • [7]

    Mazhouda, K., and Smajlović, L. Evaluation of the Li coefficients on function fields and applications. Eur. J. Math. 5, 2 (Jan. 2018), 540550.

    • Search Google Scholar
    • Export Citation
  • [8]

    Omar, S., and Mazhouda, K. The Li criterion and the Riemann hypothesis for the selberg class II. J. Number Theory 130, 4 (Apr. 2010), 10981108.

    • Search Google Scholar
    • Export Citation
  • [9]

    Salvador, G. D. V. Topics in the theory of algebraic function fields. Mathematics: Theory and Applications. Birkhäuser Boston, 2006.

  • [10]

    Smajlović, L. On Li’s criterion for the Riemann hypothesis for the Selberg class. Journal of Number Theory 130, 4 (Apr. 2010), 828851.

    • Search Google Scholar
    • Export Citation
  • [11]

    Stichtenoth, H. Algebraic Function Fields and Codes. Springer Berlin Heidelberg, 2009.

  • [12]

    Voros, A. Zeta Functions over Zeros of Zeta Functions. Springer Berlin Heidelberg, 2010.

  • [13]

    Voros, A. Discretized Keiper/Li approach to the Riemann hypothesis. Experimental Mathematics 29, 4 (July 2018), 452469.

  • [14]

    Weil, A. Sur les courbes algébriques et les variétés qui s’en déduisent. Actualités Scientifiques et Industrielles, No. 1041. Hermann & Cie, Paris, 1948. Publ. Inst. Math. Univ. Strasbourg, 7 (1945), iv+85 pp.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • † Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)