In this paper, we define the discretized Voros–Li coefficients associated to the zeta function on function fields of genus 𝑔 over a finite fields 𝔽𝑞. Furthermore, we give a finite sum representation, an integral formula and an asymptotic formula for these coefficients.
Bllaca, K. H., and Mazhouda, K. Centralized variant of the Li criterion on functions fields. Finite Fields and Their Applications 72 (June 2021), 101800.
Bllaca, K. H., and Mazhouda, K. Explicit formula on function fields and application: Li coefficients. Annali di Matematica Pura ed Applicata (1923-) 200, 5 (Jan. 2021), 1859–1869.
Bombieri, E., and Lagarias, J. C. Complements to Li’s criterion for the Riemann hypothesis. J. Number Theory 77, 2 (Aug. 1999), 274–287.
Lagarias, J. Li coefficients for automorphic 𝐿-functions. Ann. l’inst. Fourier 57, 5 (2007), 1689–1740.
Li, X.-J. The positivity of a sequence of numbers and the Riemann hypothesis. J. Number Theory 65, 2 (Aug. 1997), 325–333.
Mazhouda, K., and Smajlović, L. On relations equivalent to the generalized Riemann hypothesis for the selberg class. Functiones et Approximatio Commentarii Mathematici 56, 1 (Mar. 2017).
Mazhouda, K., and Smajlović, L. Evaluation of the Li coefficients on function fields and applications. Eur. J. Math. 5, 2 (Jan. 2018), 540–550.
Omar, S., and Mazhouda, K. The Li criterion and the Riemann hypothesis for the selberg class II. J. Number Theory 130, 4 (Apr. 2010), 1098–1108.
Salvador, G. D. V. Topics in the theory of algebraic function fields. Mathematics: Theory and Applications. Birkhäuser Boston, 2006.
Smajlović, L. On Li’s criterion for the Riemann hypothesis for the Selberg class. Journal of Number Theory 130, 4 (Apr. 2010), 828–851.
Stichtenoth, H. Algebraic Function Fields and Codes. Springer Berlin Heidelberg, 2009.
Voros, A. Zeta Functions over Zeros of Zeta Functions. Springer Berlin Heidelberg, 2010.
Voros, A. Discretized Keiper/Li approach to the Riemann hypothesis. Experimental Mathematics 29, 4 (July 2018), 452–469.
Weil, A. Sur les courbes algébriques et les variétés qui s’en déduisent. Actualités Scientifiques et Industrielles, No. 1041. Hermann & Cie, Paris, 1948. Publ. Inst. Math. Univ. Strasbourg, 7 (1945), iv+85 pp.