Author:
Christophe Chesneau Department of Mathematics, LMNO, University of Caen-Normandie, 14032 Caen, France

Search for other papers by Christophe Chesneau in
Current site
Google Scholar
PubMed
Close
Open access

In this article, we use the idea of “negation” to construct new unit distributions, i.e., continuous distributions with support equal to the unit interval [0, 1]. A notable feature of these distributions is that they have opposite shape properties to the unit distributions from which they are derived; “opposite” in the sense that, from a graphical point of view, a certain horizontal symmetry is operated. We then examine the main properties of these negation-type distributions, including distributional functions, moments, and entropy measures. Finally, concrete examples are described, namely the negation-type power distribution, the negation-type [0, 1]-truncated exponential distribution, the negation-type truncated [0, 1]-sine distribution, the negation-type [0, 1]-truncated Lomax distribution, the negation-type Kumaraswamy distribution, and the negation-type beta distribution. Some of their properties are studied, also with the help of graphics that highlight their original modeling behavior. After the analysis, it appears that the negation-type Kumaraswamy distribution stands out from the others by combining simplicity with a high degree of flexibility, in a sense completing the famous Kumaraswamy distribution. Overall, our results enrich the panel of unit distributions available in the literature with an innovative approach.

  • [1]

    Amigó, J. M., Balogh, S. G., and Hernández, S. A brief review of generalized entropies. Entropy 20, 11 (2018), 813.

  • [2]

    Arnold, B. and Groeneveld, R. Some properties of the arcsine distribution. J. Amer. Statist. Assoc 75, 369 (1980), 173175.

  • [3]

    Arslan, T. A new family of unit-distributions: Definition, properties and applications. Twms J. Appl. Eng. Math 13, 2 (2023) 782791.

  • [4]

    Bain, L. J. and Gaoxiong, G. Conditional maxima and inferences for the truncated exponential distribution. Can. J. Stat 24, 2 (1996), 251256.

    • Search Google Scholar
    • Export Citation
  • [5]

    Batyrshin, I., Villa-Vargas, L. A., Ramírez-Salinas, M. A., Salinas-Rosales, M., and Kubysheva, N. Generating negations of probability distributions. Soft Comput. 25 (2021), 79297935.

    • Search Google Scholar
    • Export Citation
  • [6]

    Benchiha, S., Sapkota, L. P., Al Mutairi, A., Kumar, V., Khashab, R. H., Gemeay, A. M., Elgarhy, M., and Nassr, S. G. A new sine family of generalized distributions: Statistical Inference with Applications. Math. Comput. Appl., 28 4 (2023), 83.

    • Search Google Scholar
    • Export Citation
  • [7]

    Ferreira, A. and Mazucheli, J. The zero-inflated, one and zero-and-one-inflated new unit-Lindley distributions. Braz. J. Biom 40, 3 (2022), 291326.

    • Search Google Scholar
    • Export Citation
  • [8]

    Gao, X. and Deng, Y. The negation of basic probability assignment. IEEE Access 7 (2019), 107006107014.

  • [9]

    Ghitany, M., Mazucheli, J., Menezes, A., and Alqallaf, F. The unit-inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval. Commun. Stat. Theory Methods 48, 14 (2018) 48, 34233438.

    • Search Google Scholar
    • Export Citation
  • [10]

    Gupta, A. K. and Nadarajah, S. Handbook of Beta Distribution and Applications. Marcel Dekker, New York, 2004.

  • [11]

    Johnson, N. L., Kotz, S., and Balakrishnan, N. Continuous Univariate Distributions Vol. 2 (2nd ed.) Chapter 25: Beta Distributions. Wiley, 1995.

    • Search Google Scholar
    • Export Citation
  • [12]

    Karagül, B. Z. and Özel, K. G. Truncated Lomax distribution with applications in insurance. Int. J. Appl. Math. Stat 56, 6 (2017), 99112.

    • Search Google Scholar
    • Export Citation
  • [13]

    Klein, I. Some Technical Remarks on Negations of discrete probability distributions and their information loss. Mathematics 10, 20 (2022), 3893.

    • Search Google Scholar
    • Export Citation
  • [14]

    Kotz, S. and Van Dorp, J. R. Beyond Beta: Other Continuous Families of Distributions with Bounded Support and Applications. World Scientific Publishing Co., Singapore, 2004.

    • Search Google Scholar
    • Export Citation
  • [15]

    Korkmaz, M. and Chesneau, C. On the unit Burr-XII distribution with the quantile regression modeling and applications. Comput. Appl. Math. 40 (2021), 29.

    • Search Google Scholar
    • Export Citation
  • [16]

    Korkmaz, M., Chesneau, C., and Korkmaz, Z. On the arcsecant hyperbolic normal distribution. Properties, quantile regression modeling and applications. Symmetry 13, 1 (2021), 117.

    • Search Google Scholar
    • Export Citation
  • [17]

    Korkmaz, M. A new heavy-tailed distribution defined on the bounded interval: The logit slash distribution and its applications. J. Appl. Stat 47, 12 (2019), 20972119.

    • Search Google Scholar
    • Export Citation
  • [18]

    Kumaraswamy, P. A generalized probability density function for double-bounded random processes. J. Hydrol 46, 1–2 (1980), 7988.

  • [19]

    Li, S., Xiao, F., and Abawajy, J. H. Conflict management of evidence theory based on belief entropy and negation. IEEE Access 8 (2020), 3776637774.

    • Search Google Scholar
    • Export Citation
  • [20]

    Liu, R., Deng, Y., and Li, Z. The maximum entropy negation of basic probability assignment. Sof t Comput. 27 (2023), 70117021.

  • [21]

    Luo, Z. and Deng, Y. A matrix method of basic belief assignment’s negation in Dempster–Shafer theory. IEEE Transact. Fuzzy Syst 28, 9 (2019), 22702276.

    • Search Google Scholar
    • Export Citation
  • [22]

    Marshall, A. W. and Olkin, I. Life Distributions. Springer, New York, NY, USA, 2007.

  • [23]

    Mazucheli, J., Menezes, A., and Chakraborty, S. On the one parameter unit-Lindley distribution and its associated regression model for proportion data. J. Appl. Stat 46, 4 (2019), 700714.

    • Search Google Scholar
    • Export Citation
  • [24]

    Mazucheli, J., Menezes, A., and Dey, S. Unit-Gompertz distribution with applications. Statistica 79, 1 (2019), 2543.

  • [25]

    Modi, K. and Gill, V. Unit Burr III distribution with application. J. Stat. Manag. Syst 23, 3 (2019), 579592.

  • [26]

    Singh, D. P., Jha, M., Tripathi, Y., and Wang, L. Reliability estimation in a multicomponent stress-strength model for unit Burr III distribution under progressive censoring. Qual. Technol. Quant. Manag 19, 5 (2022), 605632.

    • Search Google Scholar
    • Export Citation
  • [27]

    Souza, L., Junior, W., De Brito, C., Chesneau, C., Ferreira, T., and Soares, L. On the Sin-G class of distributions: Theory, model and application. J. Math. Model 7, 3 (2019), 357379.

    • Search Google Scholar
    • Export Citation
  • [28]

    Srivastava, A. and Maheshwari, S. Some new properties of negation of a probability distribution. Int. J. Intell. Syst 33, 6 (2018), 11331145.

    • Search Google Scholar
    • Export Citation
  • [29]

    Srivastava, A., and Kaur, L. Uncertainty and negation-information theoretic applications. Int. J. Intell. Syst 34, 6 (2019), 12481260.

    • Search Google Scholar
    • Export Citation
  • [30]

    Steutel, F. W. and Harn, van, K. Infinite divisibility of probability distributions on the real line. (Pure and applied mathematics: a series of monographs and textbooks, Vol. 259). Marcel Dekker, New York, 2004.

    • Search Google Scholar
    • Export Citation
  • [31]

    Sun, C., Li, S., and Deng, Y. Determining weights in multi-criteria decision making based on negation of probability distribution under uncertain environment. Mathematics 8, 2 (2020), 191.

    • Search Google Scholar
    • Export Citation
  • [32]

    Topp, C. and Leone, F. A family of J-shaped frequency functions. J. Am. Stat. Assoc 50, 269 (1955), 209219.

  • [33]

    Tsallis, C. Generalized entropy-based criterion for consistent testing. Phys. Rev. E 58 (1998), 14421445.

  • [34]

    Van Dorp, R. and Kotz, S. The standard two-sided power distribution and its properties. Am. Stat 56, 2 (2002), 56 99 56, 90–99.

  • [35]

    Xie, D. and Xiao, F. Negation of basic probability assignment: Trends of dissimilarity and dispersion. IEEE Access 7 (2019), 111315111323.

    • Search Google Scholar
    • Export Citation
  • [36]

    Xie, K. and Xiao, F. Negation of belief function based on the total uncertainty measure. Entropy 21, 1 (2019), 73.

  • [37]

    Yager, R. R. On the maximum entropy negation of a probability distribution. IEEE Transact. Fuzzy Syst 23, 5 (2015), 18991902.

  • [38]

    Yin, L., Deng, X., and Deng, Y. The negation of a basic probability assignment. IEEE Transact. Fuzzy Syst 27, 1 (2019), 135143.

  • [39]

    Zhang, J., Liu, R., Zhang, J., and Kang, B. Extension of Yager’s negation of a probability distribution based on Tsallis entropy. Int. J. Intell. Syst 35, 1 (2019), 7284.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • † Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)