Author:
Christophe Chesneau Department of Mathematics, LMNO, University of Caen, 14032 Caen, France

Search for other papers by Christophe Chesneau in
Current site
Google Scholar
PubMed
Close
Open access

In this article, we present new results on specific cases of a general Young integral inequality established by Páles in 1990. Our initial focus is on a bivariate function, defined as the product of two univariate and separable functions. Based on this, some new results are established, including particular Young integral-type inequalities and some upper bounds on the corresponding absolute errors. The precise role of the functions involved in this context is investigated. Several applications are presented, including one in the field of probability theory. We also introduce and study reverse variants of our inequalities. Another important contribution is to link the setting of the general Young integral inequality established by Páles to a probabilistic framework called copula theory. We show that this theory provides a wide range of functions, often dependent on adjustable parameters, that can be effectively applied to this inequality. Some illustrative graphics are provided. Overall, this article broadens the scope of bivariate inequalities and can serve related purposes in analysis, probability and statistics, among others.

  • [1]

    Anderson, D. R. Young’s integral inequality on time scales revisited. JIPAM. J. Inequal. Pure Appl. Math. 8, 3 (2007), article no. 64.

    • Search Google Scholar
    • Export Citation
  • [2]

    Boas, Jr., R. P., and Marcus, M. B. Inequalities involving a function and its inverse. SIAM J. Math. Anal. 4 (1973), 585591.

  • [3]

    Boas, Jr., R. P., and Marcus, M. B. Generalizations of Young’s inequality. J. Math. Anal. Appl. 46 (1974), 3640.

  • [4]

    Çelebioglu, S. A way of generating comprehensive copulas. J. Inst. Sci. Technol. 10 (1997), 5761.

  • [5]

    Cerone, P. On Young’s inequality and its reverse for bounding the Lorenz curve and Gini mean. J. Math. Inequal. 3, 3 (2009), 369381.

    • Search Google Scholar
    • Export Citation
  • [6]

    Chesneau, C. Theoretical advancements on a few new dependence models based on copulas with an original ratio form. Modelling 4 (2023), 102132.

    • Search Google Scholar
    • Export Citation
  • [7]

    Chesneau, C. Theoretical contributions to three generalized versions of the Celebioglu–Cuadras copula. Analytics 2 (2023), 3154.

  • [8]

    Cooper, R. Notes on Certain Inequalities: (1); Generalization of an Inequality of W. H. Young. J. London Math. Soc. 2, 1 (1927), 1721.

    • Search Google Scholar
    • Export Citation
  • [9]

    Cooper, R. Notes on Certain Inequalities: II. J. London Math. Soc. 2, 3 (1927), 159163.

  • [10]

    Cuadras, C. M. Constructing copula functions with weighted geometric means. J. Statist. Plann. Inference 139, 11 (2009), 37663772.

  • [11]

    Cunningham, F., Jr., and Grossman, N. On Young’s inequality. Amer. Math. Monthly 78 (1971), 781783.

  • [12]

    Diaz, J. B., and Metcalf, F. T. An analytic proof of Young’s inequality. Amer. Math. Monthly 77, 6 (1970), 603609.

  • [13]

    Durante, F., and Sempi, C. Principles of copula theory. CRC Press, Boca Raton, FL, 2016.

  • [14]

    Hsu, I. C. On a converse of Young’s inequality. Proc. Amer. Math. Soc. 33 (1972), 107108.

  • [15]

    Joe, H. Dependence modeling with copulas, vol. 134 of Monogr. Statist. Appl. Probab. CRC Press, Boca Raton, FL, 2015.

  • [16]

    Kumaraswamy, P. A generalized probability density function for double-bounded random processes. J. of Hydro. 46, 1-2 (1980), 7988.

  • [17]

    Lacković, I. B. A note on a converse of Young’s inequality. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 461-497, 461 (1974), 7376.

    • Search Google Scholar
    • Export Citation
  • [18]

    Mitrinović, D. S. Analytic inequalities, vol. 165 of Die Grundlehren der mathematischen Wissenschaften, Band. Springer, New York-Berlin, 1970. In cooperation with P. M. Vasić.

    • Search Google Scholar
    • Export Citation
  • [19]

    Mitrinović, D. S., Pečarić, J. E., and Fink, A. M. Classical and new inequalities in analysis, vol. 61 of Mathematics and its Applications (East European Series). Kluwer Academic Publishers Group, Dordrecht, 1993.

    • Search Google Scholar
    • Export Citation
  • [20]

    Mitroi, F.-C., and Niculescu, C. P. An extension of Young’s inequality. Abstr. Appl. Anal. (2011), article no. 162049.

  • [21]

    Nadarajah, S., Afuecheta, E., and Chan, S. A compendium of copulas. Statistica 77 (2017), 279328.

  • [22]

    Nelsen, R. B. An introduction to copulas, second ed. Springer Ser. Statist. Springer, New York, 2006.

  • [23]

    Oppenheim, A. Note on Mr. Cooper’s Generalization of Young’s Inequality. J. London Math. Soc. 2, 1 (1927), 2123.

  • [24]

    Páles, Z. A generalization of Young’s inequality. In General inequalities, 5 (Oberwolfach, 1986), vol. 80 of Internat. Schriftenreihe Numer. Math. Birkhäuser, Basel, 1987, pp. 471472.

    • Search Google Scholar
    • Export Citation
  • [25]

    Páles, Z. On Young-type inequalities. Acta Sci. Math. (Szeged) 54, 3-4 (1990), 327338.

  • [26]

    Páles, Z. A general version of Young’s inequality. Arch. Math. (Basel) 58, 4 (1992), 360365.

  • [27]

    Parker, F. D. Integrals of inverse functions. Amer. Math. Monthly 62, 6 (1955).

  • [28]

    R Core Team. A Language and Environment for Statistical Computing. Vienna, Austria, 2016.

  • [29]

    Ruthing, D. On Young’s inequality. Internat. J. Math. Ed. Sci. Techn. 25, 2 (1994), 161164.

  • [30]

    Shahzad, M. N., and Asghar, Z. Transmuted power function distribution: a more flexible distribution. J. of Stat. and Manag. Syst. 19, 4 (2016), 519539.

    • Search Google Scholar
    • Export Citation
  • [31]

    Sklar, A. Random variables, joint distribution functions, and copulas. Kybernetika (Prague) 9 (1973), 449460.

  • [32]

    Sklar, M. Fonctions de répartition à 𝑛 dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229231.

  • [33]

    Takahashi, T. Remarks on some inequalities. Tôhoku Math. J. 36 (1932), 99106.

  • [34]

    Witkowski, A. On Young’s inequality. JIPAM. J. Inequal. Pure Appl. Math. 7, 5 (2006), article no. 164.

  • [35]

    Wong, F.-H., Yeh, C.-C., Yu, S.-L., and Hong, C.-H. Young’s inequality and related results on time scales. Appl. Math. Lett. 18, 9 (2005), 983988.

    • Search Google Scholar
    • Export Citation
  • [36]

    Young, W. H. On classes of summable functions and their Fourier series. Proc. Roy. Soc. London Ser. A 87 (1912), 225229.

  • [37]

    Zhu, L. On Young’s inequality. Internat. J. Math. Ed. Sci. Tech. 35, 4 (2004), 601603.

  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • † István GYŐRI, University of Pannonia, Veszprém, Hungary
  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)