Authors:
Francesc Tugores Department of Mathematics, University of Vigo, Ourense, Spain

Search for other papers by Francesc Tugores in
Current site
Google Scholar
PubMed
Close
and
Laia Tugores Department of Mathematics, University of Vigo, Ourense, Spain

Search for other papers by Laia Tugores in
Current site
Google Scholar
PubMed
Close
Open access

This short note deals with polynomial interpolation of complex numbers verifying a Lipschitz condition, performed on consecutive points of a given sequence in the plane. We are interested in those sequences which provide a bound of the error at the first uninterpolated point, depending only on its distance to the last interpolated one.

  • [1]

    Burden, R. L ., and Faires, J. D . Numerical Analysis. PWS, Boston, 2010.

  • [2]

    Carleson, L . An interpolation problem for bounded analytic functions. Am. J. Math. 80 (1958), 921930.

  • [3]

    Garnett, J. B . Bounded analytic functions, revised 1st ed. Grad. Texts Math. New York, NY: Springer, 2006.

  • [4]

    Jones, P. W . L estimates for the ¯ problem in a half-plane. Acta Math. 150 (1983), 137152.

  • [5]

    Kotochigov, A . Free interpolation in the spaces of analytic functions with derivative of order s from the Hardy space. J. Math. Sci. (N.Y.) 129, 4 (2005), 40224039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [6]

    Kronstadt, E . Interpolating sequences for functions satisfying a Lipschitz condition. Pac. J. Math. 63, 1 (1976), 169177.

  • Collapse
  • Expand
  • Top
The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • † István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2022 0 0 0
Apr 2022 0 0 0
May 2022 0 8 8
Jun 2022 0 46 22
Jul 2022 0 18 11
Aug 2022 0 21 8
Sep 2022 0 0 0