View More View Less
  • 1 University of Szeged, Hungary
Open access

For a lattice L of finite length n, let RCSub(L) be the collection consisting of the empty set and those sublattices of L that are closed under taking relative complements. That is, a subset X of L belongs to RCSub(L) if and only if X is join-closed, meet-closed, and whenever {a, x, b} ⊆ S, yL, xy = a, and xy = b, then yS. We prove that (1) the poset RCSub(L) with respect to set inclusion is lattice of length n + 1, (2) if RCSub(L) is a ranked lattice and L is modular, then L is 2-distributive in András P. Huhn’s sense, and (3) if L is distributive, then RCSub(L) is a ranked lattice.

  • [1]

    Bell, E. T . The iterated exponential integers. Annals of Mathematics (2), 3 (1938), 539557.

  • [2]

    Birkhoff, G . Rings of sets. Duke Mathematical Journal 3 (1937), 443454.

  • [3]

    Birkhoff, G . Von neumann and lattice theory. Bull. Amer. Math. Soc 64 (1958), 5056.

  • [4]

    Chajda, I ., HALAS, R ., and KÜHR, J . Semilattice structures, vol. 30 of Research and Exposition in Mathematics. Heldermann Verlag, Lemgo, 2007.

    • Search Google Scholar
    • Export Citation
  • [5]

    Chen, C. C ., and Koh, K. M . On the length of the lattice of sublattices of a finite distributive lattice. Algebra Universalis 15, 2 (1982), 233241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [6]

    Chen, C. C ., Koh, K. M ., and Teo, K. L . On the sublattice-lattice of a lattice. Algebra Universalis 19, 1 (1984), 6173.

  • [7]

    Czédli, G . On the 2-distributivity of sublattice lattices. Acta Math. Acad. Sci. Hungar. 36, 1-2 (1980), 4955.

  • [8]

    Czédli, G . Which distributive lattices have 2-distributive sublattice lattices? Acta Math. Acad. Sci. Hungar. 35, 3-4 (1980), 455463.

  • [9]

    Czédli, G . Lattices of retracts of direct products of two finite chains and notes on retracts of lattices. http://arxiv.org/abs/2112.12498.

    • Search Google Scholar
    • Export Citation
  • [10]

    Day, A . A note on arguesian lattices. Arch. Math. (Brno) 19, 3 (1983), 117123.

  • [11]

    Dilworth, R. P . Lattices with unique complements. Trans. Amer. Math. Soc. 57, 1 (1945), 123154.

  • [12]

    Filippov, N. D . Projections of lattices. Mat. Sb. (N.S.) 70 (112), 1 (1966), 3654.

  • [13]

    Grätzer, G . Lattice theory. First concepts and distributive lattices. Freeman and Company, San Francisco, California, 1971.

  • [14]

    Grätzer, G . Two problems that shaped a century of lattice theory. Notices of the AMS 54, 6 (2007), 696707.

  • [15]

    Grätzer, G . Lattice Theory: Foundation. Birkhäuser/Springer Basel AG, Basel, 2011.

  • [16]

    Herrmann, C . On the arithmetic of projective coordinate systems. Trans. Amer. Math. Soc. 284, 2 (1984), 759785.

  • [17]

    Herrmann, C ., and Huhn, A. P . Lattices of normal subgroups which are generated by frames. In Lattice theory (Proc. Colloq. Szeged 1974), A. P. Huhn and E. T. Schmidt , Eds., Colloq. Math. Soc. János Bolyai. North-Holland Publishing Company, Amsterdam-Oxford-New York, 1976, pp. 97136.

    • Search Google Scholar
    • Export Citation
  • [18]

    Huhn, A. P . Schwach distributive verbände. Acta Fac. Rerum Natur. Univ. Comenian. Math. Mimoriadne čislo (1971), 5156.

  • [19]

    Huhn, A. P . Schwach distributive verbände. Acta Sci. Math.(Szeged) 33, 3–4 (1972), 297305.

  • [20]

    Huhn, A. P . Two notes on n-distributive lattices. In Lattice theory (Proc. Colloq. Szeged 1974), A. P. Huhn and E. T. Schmidt , Eds., Colloq. Math. Soc. János Bolyai. North-Holland Publishing Company, Amsterdam-Oxford-New York, 1976, pp. 137147.

    • Search Google Scholar
    • Export Citation
  • [21]

    Huhn, A. P . n-distributivity and some questions of the equational theory of lattices. In Contributions to universal algebra (Proc. Colloq., Szeged, 1975), B, Csákány and J, Schmidt , Eds., Colloq. Math. Soc. János Bolyai. North-Holland Publishing Company, Amsterdam, 1977, pp. 167178.

    • Search Google Scholar
    • Export Citation
  • [22]

    Huhn, A. P . On nonmodular n-distributive lattices. I. lattices of convex sets. Acta Sci. Math.(Szeged) 52, 1-2 (1988), 3545.

  • [23]

    Jakubík, J . Modular lattices of locally finite length. Acta Sci. Math.(Szeged) 37, 1-2 (1975), 7982.

  • [24]

    Koh, K. M . On the length of the sublattice-lattice of a finite distributive lattice. Algebra Universalis 16, 3 (1983), 282286.

  • [25]

    Lakser, H . A note on the lattice of sublattices of a finite lattice. Nanta Math. 6, 1 (1973), 5557.

  • [26]

    Von Neumann, J . Continuous Geometry. Princeton Mathematical Series. Princeton University Press, Princeton, N.J., 1960.

  • [27]

    Ramananda, H. S . Number of convex sublattices of a lattice. Southeast Asian Bull. Math. 42, 1 (2018), 8994.

  • [28]

    Stephan, J . On the length of the lattice of sublattices of a finite distributive lattice. Algebra Universalis 30, 3 (1993), 331336.

  • [29]

    Takách, G . Lattices characterized by their sublattice-lattices. Algebra Universalis 37, 4 (1997), 422425.

  • [30]

    Takách, G . Notes on sublattice-lattices. Periodica Mathematica Hungarica 35, 3 (1997), 215224.

  • [31]

    Takách, G . On the sublattice-lattices of lattices. Publ. Math. Debrecen 52, 1–2 (1998), 121126.

  • [32]

    Takách, G . On the dependence of related structures of lattices. Algebra Universalis 42, 1–2 (1999), 131139.

  • [33]

    Tan, T . On the lattice of sublattices of a modular lattice. Nanta Math. 11, 1 (1978), 1721.

  • [34]

    Wehrung, F . A solution of Dilworth’s congruence lattice problem. Adv. Math. 216, 2 (2007), 610625.

The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • † István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)