Authors:
Emre Taştüner Department of Mathematics, Middle East Technical University, 06800 Ankara, Turkey

Search for other papers by Emre Taştüner in
Current site
Google Scholar
PubMed
Close
and
Murat Hayrettin Yurdakul Department of Mathematics, Middle East Technical University, 06800 Ankara, Turkey

Search for other papers by Murat Hayrettin Yurdakul in
Current site
Google Scholar
PubMed
Close
Open access

Let E, G be Fréchet spaces and F be a complete locally convex space. It is observed that the existence of a continuous linear not almost bounded operator T on E into F factoring through G causes the existence of a common nuclear Köthe subspace of the triple (E, G, F). If, in addition, F has the property (y), then (E, G, F) has a common nuclear Köthe quotient.

  • [1]

    Bellenot S . and Dubinsky E . Fréchet spaces with nuclear Köthe quotients. Trans. Amer. Math. Soc. 273 (1982), 579594.

  • [2]

    Bessega C., Pelczynski A . and Rolewicz S . On diametral approximative dimension and linear homogeneity of F-spaces. Bull. Acad. Polon. Sci. 9 (1961), 677683.

    • Search Google Scholar
    • Export Citation
  • [3]

    De Wilde M . Closed Graph Theorems and Webbed Spaces. Pitman, 1978.

  • [4]

    Jarchow H . Locally Convex Spaces. Teubner, 1981.

  • [5]

    Kizgut E . and Yurdakul M . The existence of a factorized unbounded operator between Fréchet spaces. Assian-Eur. J. Math. 13 (2020), no. 1, 2050017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [6]

    Önal S . and Terzioslu T . Unbounded linear operators and nuclear Köthe quotients. Arch. Math. (Basel) 54 (1990), 576581.

  • [7]

    Önal S . and Terzioslu T . Concrete subspaces and quotient spaces of locally convex spaces and completing sequences. Dissertations Math. (Rozprawy Mat.) 318 (1992).

    • Search Google Scholar
    • Export Citation
  • [8]

    Önal S . and Yurdakul M . A note on strictly singular operators. Turk. J. Math. 15 (1991), 4247.

  • [9]

    Terzioslu T . and Yurdakul M . Restrictions on unbounded continuous linear operators on Fréchet spaces. Arch. Math. (Bassel) 46 (1986), 547550.

  • [10]

    Terzioslu T ., Yurdakul M . and Zahariuta V . Factorization of unbounded operators on Köthe spaces. Studia Math. 161 (2004), 6170.

  • [11]

    Valdivia M . Completing sequences and semi-LB-spaces. Note Mat. 7 (1987), 5582.

  • [12]

    Vogt D . Remarks on a paper of S. Önal and T. Terzioğlu. Turk. J. Math. 15 (1991), 200204.

  • Collapse
  • Expand
  • Top
The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • † István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2022 0 0 0
Apr 2022 0 0 0
May 2022 0 0 0
Jun 2022 0 0 0
Jul 2022 0 83 26
Aug 2022 0 17 7
Sep 2022 0 0 0