Author:
Silvestru Sever Dragomir Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia
DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa

Search for other papers by Silvestru Sever Dragomir in
Current site
Google Scholar
PubMed
Close
View More View Less
Open access

For a continuous and positive function w(λ), λ > 0 and μ a positive measure on (0, ∞) we consider the following integral transform

D w , μ t : = 0 w λ λ + t 1 d μ λ ,

where the integral is assumed to exist for t > 0.

We show among others that D(w, μ) is operator convex on (0, ∞). From this we derive that, if f : [0, ∞) → R is an operator monotone function on [0, ∞), then the function [f(0) -f(t)] t -1 is operator convex on (0, ∞). Also, if f : [0, ∞) → R is an operator convex function on [0, ∞), then the function f 0 + f + 0 t f t t 2 is operator convex on (0, ∞). Some lower and upper bounds for the Jensen’s difference

D w , μ A + D w , μ B 2 D w , μ A + B 2

under some natural assumptions for the positive operators A and B are given. Examples for power, exponential and logarithmic functions are also provided.

  • [1]

    Bhatia, R . Matrix Analysis. Graduate Texts in Mathematics, 169. Springer-Verlag, New York, 1997. xii+347 pp. ISBN: 0-387-94846-5.

  • [2]

    Choi, M. D. Positive linear maps on C*-algebras. Canad. J. Math., 24 (1972), 520-529.

  • [3]

    Fujii, J. I. and Seo, Y. On parametrized operator means dominated by power ones. Sci. Math., 1 (1998) 301-306.

  • [4]

    Furuta, T . Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation. Linear Algebra Appl., 429 (2008) 972-980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [5]

    Furuta, T. Precise lower bound of f(A) - f(B) for A > B > 0 and non-constant operator monotone function f on (0, ∞). J. Math. Inequal., 9, 1 (2015), 47-52.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [6]

    Furuta, T. , Hot, T. M. , Pecarić J. and Seo, Y . Mond-Pecarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space. Element, Zagreb, 2005.

    • Search Google Scholar
    • Export Citation
  • [7]

    Heinz, E. Beitrage zur Störungsteorie der Spektralzerlegung. Math. Ann., 123 (1951) 415-438.

  • [8]

    Löwner K . Über monotone MatrixFunktionen. Math. Z, 38 (1934) 177-216.

  • [9]

    Moslehian, M. S. and Najafi, H. Around operator monotone functions. Integr. Equ. Oper. Theory, 71 (2011), 575-582.

  • [10]

    Moslehian, M. S. and Najafi, H. An extension of the Löwner-Heinz inequality. Linear Algebra Appl, 437 (2012), 2359-2365.

  • [11]

    Zuo, H ., Duan, G. Some inequalities of operator monotone functions. J. Math. Inequal., 8, 4 (2014), 777-781.

  • [12]

    Incomplete Gamma and Related Functions, Definitions. Digital Library of Mathematical Functions. NIST. https://dlmf.nist.gov/8.2

  • [13]

    Incomplete Gamma and Related Functions, Integral Representations. Digital Library of Mathematical Functions. NIST. https://dlmf.nist.gov/8.6

    • Search Google Scholar
    • Export Citation
  • [14]

    Generalized Exponential Integral. Digital Library of Mathematical Functions. NIST. https://dlmf.nist.gov/8.19#E1

  • Collapse
  • Expand
The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • † István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)