We consider a graph whose vertices are legally colored using k colors and ask if the graph contains a k-clique. As it turns out this very special type of k-clique problem is in an intimate connection with constructing schedules. The practicality this clique search based construction of schedules is checked by carrying out numerical experiments.
BALAS, E. Machine sequencing via disjunctive graphs: an implicit enumeration algorithm. Operation Research 17 (1969), 941–957.
BOMZE, I. M., BUDINICH, M., PARDALOS P. M., AND PELILLO, M. The Maximum Clique Problem, Handbook of Combinatorial Optimization Vol. 4, Kluwer Academic Publisher, 1999.
BUTZ, L., HAMMER, P. L., AND HAUSSMANN, D. Reduction methods for the vertex packing problem. Proceedings of the 17th Conference on Probability Theory. Brassov, 1982, VNU Science Press Utrecht 1985, pp. 73–79.
CARRAGHAN, R., PARDALOS, P. M., An exact algorithm for the maximum clique problem. Opera-tion Research Letters 9 (1990), 375–382.
GAREY, M. R. AND JOHNSON, D. S. Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, New York, 2003.
HASSELBERG, J., PARDALOS, P. M., AND VAIRAKTARAKIS, G. Test case generators and compu-tational results for the maximum clique problem. Journal of Global Optimization 3 (1993), 463–482. http://www.springerlink.com/content/p2m65n57u657605n
HEGYHÁTI, M., HOCZINGER, T., AND ŐSZ, O. Addressing storage time restrictions in the S-graph scheduling framework. Optimization and Engineering (2020).
JURISCH, B., KUBIAK, W., AND JÓZEFOWSKA, J. Algorithms for minclique scheduling problems. Discrete Applied Mathematics 72 (1997), 115–139.
KONC, J., AND JANE IČ, D. An improved branch and bound algorithm for the maximum clique problem. MATCH Communications in Mathematical and Computer Chemistry 58 (2007), 569–590.
KUMLANDER, D. Some Practical Algorithms to Solve the Maximal Clique Problem. PhD. Thesis, Tallin University of Technology, 2005.
ÖSTERGÅRD, P. R. J. A fast algorithm for the maximum clique problem. Discrete Applied Math-ematics 120 (2002), 197–207.
PAPADIMITRIOU, C. H. Computational Complexity. Addison-Wesley Publishing Company, Inc., Reading, MA 1994.
SANMARTÍ, E. PUIGJANER, L., HOLCZINGER, T., AND FRIEDLER, F. Combinatorial framework for effective scheduling of multipurpose batch plants. Process System Engineering 48 (2002), 2557–2570.
SZABÓ, S. Parallel algorithms for finding cliques in a graph. Journal of Physics: Conference Series 268 (2011) 012030.
SZABÓ, S. AND ZAVÁLNIJ, B. Edge coloring of graphs, uses, limitation, complexity. Acta Uni-versitatis Sapientiae, Informatica 8 (2016), 63–81.
TOMITA E. AND SEKI, T. An efficient branch-and-bound algorithm for finding a maximum clique. Lecture Notes in Computer Science 2631 (2003), 278–289.