Authors:
Imre KátaiELTE, Pázmány P. Sétány. 1/C, H-1117 Budapest, Hungary

Search for other papers by Imre Kátai in
Current site
Google Scholar
PubMed
Close
and
Bui M. PhongELTE, Pázmány P. Sétány. 1/C, H-1117 Budapest, Hungary

Search for other papers by Bui M. Phong in
Current site
Google Scholar
PubMed
Close
View More View Less
Open access

We give all solutions of completely multiplicative functions ƒ , g, for which the equation Ag(n + 1) = Bƒ (n) + C holds for every n ∈ ℕ. We also study the equation G(p + 1) = F(p − 1) + D and we prove some results concerning it.

  • [1]

    ELLIOTT, P. D. T. A. A conjecture of Kátai. Acta Arith. 26 (1974), 1120.

  • [2]

    ELLIOTT, P. D. T. A. On additive arithmetic function f(n) for which f(an + b) − f(cn + d) is bounded. J. Number Theory, 16 (1983), 285310.

    • Search Google Scholar
    • Export Citation
  • [3]

    ELLIOTT, P. D. T. A. On representing integers as products of the p + 1. Monatshefte für Math. 97 (1984), 8597.

  • [4]

    ROGER, H.-B. Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression. Proc. London Math. Soc. 64 (3) (1992), 265338.

    • Search Google Scholar
    • Export Citation
  • [5]

    KÁTAI, I. On sets characterizing number-theoretical functions. Acta Arith. 13 (1968), 315320.

  • [6]

    KÁTAI, I. On sets characterizing number-theoretical functions (II) (The set of “prime plus one”’s is a set of quasi-uniqueness). Acta Arithmetica 16 (1969), 14.

    • Search Google Scholar
    • Export Citation
  • [7]

    KÁTAI, I. KHANH, B. M. M., AND PHONG, B. M. On the equation F(n2 + m2 + k) = H(n)+ H(m)+ K. J. Math. Math. Sci. 1 (2022), 132148.

  • [8]

    KHANH, B. M. M. On the equation f(n2 + Dm2) = f(n)2 + Df(m)2. Ann. Univ. Sci. Budapest. Sect. Comput. 44 (2015), 5968.

  • [9]

    KHANH, B. M. M. On conjecture concerning the functional equation. Annales Univ. Sci. Budapest., Sect. Comp. 46 (2017), 123135.

  • [10]

    SPIRO, C. Additive uniqueness sets for arithmetic functions. J. Number Theory 42 (1992), 232246.

  • [11]

    TRIANTAFYLLOS, X. On Linnik's constant. Acta Arith. 150 (1) (2011), 6591.

  • [12]

    TRIANTAFYLLOS, X. Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression [The zeros of Dirichlet L-functions and the least prime in an arithmetic progression] (Dissertation for the degree of Doctor of Mathematics and Natural Sciences) (in German), 2011. Bonn: Universität Bonn, Mathematisches Institut.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • † István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)