Authors:
Işıl Açık DemırcıDepartment of Mathematics, Mehmet Akif Ersoy University, 15030, Burdur, Turkey

Search for other papers by Işıl Açık Demırcı in
Current site
Google Scholar
PubMed
Close
,
Ömer KışıDepartment of Mathematics, Bartın University, 74100, Bartın, Turkey

Search for other papers by Ömer Kışı in
Current site
Google Scholar
PubMed
Close
, and
Mehmet GürdalDepartment of Mathematics, Süleyman Demirel University, 32260, Isparta, Turkey

Search for other papers by Mehmet Gürdal in
Current site
Google Scholar
PubMed
Close
View More View Less
Open access

Fast [12] is credited with pioneering the field of statistical convergence. This topic has been researched in many spaces such as topological spaces, cone metric spaces, and so on (see, for example [19, 21]). A cone metric space was proposed by Huang and Zhang [17]. The primary distinction between a cone metric and a metric is that a cone metric is valued in an ordered Banach space. Li et al. [21] investigated the definitions of statistical convergence and statistical boundedness of a sequence in a cone metric space. Recently, Sakaoğlu and Yurdakadim [29] have introduced the concepts of quasi-statistical convergence. The notion of quasi I-statistical convergence for triple and multiple index sequences in cone metric spaces on topological vector spaces is introduced in this study, and we also examine certain theorems connected to quasi I-statistically convergent multiple sequences. Finally, we will provide some findings based on these theorems.

  • [1]

    ABBAS, M. AND RHOADES, B. E. Fixed and periodic point results in cone metric space. Appl. Math. Lett. 2 (2009), 511515.

  • [2]

    AÇIK DEMIRCI I. AND GÜRDAL, M. On generalized statistical convergence via ideal in cone metric space. ICRAPAM 2020 Conference Proceeding, September 25-28 (2020) Mugla, Turkey, 3641.

    • Search Google Scholar
    • Export Citation
  • [3]

    ALIPRANTICE, C. D., AND TOURKY, R. Cones and duality. Amer. Math. Soc. 30 (2007), 33573366.

  • [4]

    ALTINOK, H., ET, M., AND ALTIN, Y. Lacunary statistical boundedness of order β for sequences of fuzzy numbers. J. Intell. Fuzzy Syst. 35, 2 (2018), 23832390.

    • Search Google Scholar
    • Export Citation
  • [5]

    BRAHA, N. L., SRIVASTAVA, H. M., AND ET, M. Some weighted statistical convergence and associated Korovkin and Voronovskaya type theorems. J. Appl. Math. Comput. 65, 1 (2021), 429450.

    • Search Google Scholar
    • Export Citation
  • [6]

    BRAHA, N. L., LOKU, V., MANSOUR, T., AND MURSALEEN, M. A new weighted statistical conver-gence and some associated approximation theorems. Math. Methods Appl. Sci. 45, 10 (2021), 56825698

    • Search Google Scholar
    • Export Citation
  • [7]

    CHI, K. P., AN, T. V. Dugungji’s theorem for cone metric spaces. Appl. Math. Lett. 24 (2011), 387390.

  • [8]

    CONNOR, J. The statistical and strong p-Cesàro convergence of sequences. Analysis 8 (1988), 4763.

  • [9]

    CONNOR, J. On strong matrix summability with respect to a modulus and statistical convergence.Canad. Math. Bull. 32 (1989), 194198.

  • [10]

    DAS, P., KOSTYRKO, P., WILCZYNCKI, W., AND MALIK, P. I and I-convergence of double sequence. Math. Slovaca 58, 5 (2008), 605620.

  • [11]

    DAS, P., SAVAŞ, E., AND GHOSAL, S. On generalized ofcertain summability methods using ideals. Appl. Math. Lett. 26 (2011), 15091514.

    • Search Google Scholar
    • Export Citation
  • [12]

    FAST, H. Sur la convergence statistique. Colloq. Math. 2 (1951), 241244.

  • [13]

    FRIDY, J. A. On statistical convergence. Analysis (Munich), 5 (1985), 301313.

  • [14]

    GANGULY, D. K. AND DAFADAR, A. On quasi statistical convergence of double sequences. Gen. Math. Notes 32, 2 (2016), 4253.

  • [15]

    GANICHEV, M. AND KADETS, V. Filter convergence in Banach spaces and generalized bases. In: General topology in Banach spaces. Huntington, NY: Nova Science Publishers (2001), 6169.

    • Search Google Scholar
    • Export Citation
  • [16]

    GÜRDAL, M. AND ŞAHINER, A. Extremal I-limit points of double sequences. Appl. Math. E-Notes 8 (2008), 131137.

  • [17]

    HUANG, L. G.AND ZHANG, X. Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332 (2007), 14671475.

    • Search Google Scholar
    • Export Citation
  • [18]

    KADELBURG, Z., RADENOVIC, S., AND RAKOCEVIC, V. A note on the equivalence of some metric and cone metric fixed point results. Appl. Math. Lett. 24 (2011), 370374.

    • Search Google Scholar
    • Export Citation
  • [19]

    KOSTYRKO, P., ŠALÁT, T., AND WILCZYNSKI, W. I-convergence. Real Anal. Exch. 26 (2000), 669686.

  • [20]

    LAHIRI, B. K., AND DAS, P. I and I∗-convergence in topological spaces. Math. Bohemica 130, 2 (2005) 153160.

  • [21]

    LI, K., LIN, S., AND GE, Y. On statistical convergence in cone metric space. Topol. Appl. 196 (2015), 641651.

  • [22]

    LONG-GUANG, H., AND XIAN, Z. Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332 (2007), 14681476.

    • Search Google Scholar
    • Export Citation
  • [23]

    MAMUZIC, Z. P. Introduction to general topology. P. Noordhoff, Ltd., The Netherlands (1963).

  • [24]

    MORICZ, F. Statistical convergence of multiple sequences. Arc. Math. 81 (2003), 8289.

  • [25]

    MURSALEEN, M.AND EDELY, O. H. H. Statistical convergence of double sequences. J. Math. Anal. Appl. 288 (2003), 223231.

  • [26]

    MURSALEEN, M., MOHIUDDINE, S. A., AND EDELY, O. H. H. On ideal convergence of double sequences in intuitionistic fuzzy normed spaces. Comput. Math. Appl. 59 (2010), 603611.

    • Search Google Scholar
    • Export Citation
  • [27]

    NABIEV, A., PEHLIVAN, S., AND GÜRDAL, M. On I-Cauchy sequences. Taiwanese J. Math. 12 (2007), 569576.

  • [28]

    PAL, S. K., SAVAŞ, E., AND ÇAKALLI, H. I-convergence on cone metric spaces. Sarajevo J. Math. 9, 21 (2013), 8593.

  • [29]

    SAKAOČLU ÖZGÜÇ, I., AND YURDAKADIM, T. On quasi-statistical convergence. Commun. Fac. Sci. Univ. Ank. Series A1 61, 1 (2012), 1117.

    • Search Google Scholar
    • Export Citation
  • [30]

    ŠALÁT, T. On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139150.

  • [31]

    ŞAHINER, A., GÜRDAL, M., AND DÜDEN, F. K. Triple sequences and their statistical convergence. Selçuk J. Appl. Math. 8, 2 (2007), 4955.

    • Search Google Scholar
    • Export Citation
  • [32]

    ŞAHINER, A.AND TRIPATHY, B. C. Some I-related properties of triple sequences. Selçuk J. Appl. Math. 9, 2 (2008), 918.

  • [33]

    ŞAHINER, A. AND YILMAZ, N. Multiple sequences in cone metric spaces. TWMS J. App. Eng. Math. 4, 2 (2014), 226233.

  • [34]

    ŞAHINER, A., YIČIT, T., AND YILMAZ, N. I-convergence of multiple sequences in cone metric spaces. Contemporary Analy. Appl. Math. 2, 1 (2014), 116126.

    • Search Google Scholar
    • Export Citation
  • [35]

    TEMIZSU, F.AND ET, M. Some results on generalizations of statistical boundedness. Math. Methods Appl. Sci. 44, 9 (2021), 74717478.

  • [36]

    TURAN, N., KARA, E. E., AND İLKHAN, M. Quasi statistical convergence in cone metric spaces. Facta Univ. Ser. Math. Inform. 33, 4 (2018), 613626.

    • Search Google Scholar
    • Export Citation
  • [37]

    TURKOGLU, D.AND ABULOHA, M. Cone metric spaces and fixed point theorems in diametrically contractive mappings. Acta Math. Sin. Engl. Ser. Mar. 26, 3 (2010), 489496.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • † István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)