Author:
Silvestru Sever DragomirMathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia
DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

Search for other papers by Silvestru Sever Dragomir in
Current site
Google Scholar
PubMed
Close
View More View Less
Open access

Assume that Aj , j ∈ {1, … , m} are positive definite matrices of order n. In this paper we prove among others that, if 0 < l In Aj , j ∈ {1, … , m} in the operator order, for some positive constant l, and In is the unity matrix of order n, then

o 1 2 k = 1 m P k 1 P k det 2 A j l I n 1 / 2 2 1 j < k m P j P k det A j + A k l I n 1 / 2 j = 1 m P j det A j 1 / 2 det k = 1 m P k A k 1 / 2 ,

where Pk ≥ 0 for k ϵ {1, …, m} and j = 1 m P j = 1 .

  • [1]

    BECKENBACH, E. F. AND BELLMAN, R. Inequalities. Berlin-Heidelberg-New York, 1971.

  • [2]

    CARTWRIGHT, D. I. AND FIELD, M. J. A refinement of the arithmetic mean-geometric mean inequality. Proc. Amer. Math. Soc. 71 (1978), 3638.

    • Search Google Scholar
    • Export Citation
  • [3]

    LI, Y., YONGTAO, L., HUANG FENG Z., AND LIU, W. Inequalities regarding partial trace and partial determinant. Math. Inequal. Appl. 23 (2) (2020), 477485.

    • Search Google Scholar
    • Export Citation
  • [4]

    LIN, M. AND SINNAMON, G. Revisiting a sharpened version of Hadamard’s determinant inequality. Linear Algebra Appl. 606 (2020), 192200.

    • Search Google Scholar
    • Export Citation
  • [5]

    LIU, J.-T., WANG Q.-W., AND SUN, F.-F. Determinant inequalities for Hadamard product of positive definite matrices. Math. Inequal. Appl. 20 (2) (2017), 537542.

    • Search Google Scholar
    • Export Citation
  • [6]

    LUO, W. Further extensions of Hartfiel’s determinant inequality to multiple matrices. Spec. Matrices 9 (2021), 7882.

  • [7]

    ITO, M. Estimations of the weighted power mean by the Heron mean and related inequalities for determinants and traces. Math. Inequal. Appl. 22 (3) (2019), 949966.

    • Search Google Scholar
    • Export Citation
  • [8]

    MIRSKY, L. An inequality for positive definite matricies. Amer. Math. Monthly 62 (1955), 428430.

  • [9]

    MITRINOVIS, D. S., PESARIS, J. E., AND FINK, A. M. Classical and New Inequalities in Analysis. Kluwer Acedemic Publishers, 1993.

  • Collapse
  • Expand
The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • † István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • György DÓSA (University of Pannonia, Veszprém)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Margit PAP (University of Pécs)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM (Akadémiai Kiadó, Budapest)
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)