Authors:
Jonathan David Farley Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, MD 21251, USA

Search for other papers by Jonathan David Farley in
Current site
Google Scholar
PubMed
Close
and
Dominic van der Zypen Swiss Armed Forces Command Support, CH-3003 Bern, Switzerland

Search for other papers by Dominic van der Zypen in
Current site
Google Scholar
PubMed
Close
Open access

Grätzer and Lakser asked in the 1971 Transactions of the American Mathematical Society if the pseudocomplemented distributive lattices in the amalgamation class of the subvariety generated by 2n ⊕ 1 can be characterized by the property of not having a * homomorphism onto 2i ⊕ 1 for 1 < i < n.

In this article, this question is answered.

  • [1]

    Adams, M. The Structure of Distributive Lattices, Ph.D. thesis, University of Bristol, Bristol, England, 1973.

  • [2]

    Balbes, R. and Dwinger, P. Distributive Lattices (University of Missouri Press, Columbia, Missouri, 1974).

  • [3]

    Bergman, C. Amalgamation classes of some distributive varieties. Algebra Universalis 20 (1985), 143166.

  • [4]

    Bergman, C., McKenzie, R., and Nagy, Zs. How to cancel a linearly ordered exponent. Colloquia Mathematica Societatis János Bolyai 29. Universal Algebra Esztergom (Hungary), 1977. (North-Holland, Amsterdam-New York, 1982), 8793.

    • Search Google Scholar
    • Export Citation
  • [5]

    Cornish, W. H. Ordered topological spaces and the coproduct of bounded distributive lattices. Colloquium Mathematicum 36 (1976), 2735.

    • Search Google Scholar
    • Export Citation
  • [6]

    Davey, B. A. and Priestley, H. A. Partition-induced natural dualities for varieties of pseudo-complemented distributive lattices. Discrete Mathematics 113 (1993), 4158.

    • Search Google Scholar
    • Export Citation
  • [7]

    Davey, B. A. and Priestley, H. A. Introduction to Lattices and Order, second edition. Cambridge University Press, Cambridge, 2002.

  • [8]

    Farley, J. D. The automorphism group of a function lattice: a problem of Jónsson and McKenzie. Algebra Universalis 36 (1996), 845.

  • [9]

    Farley, J. D. Priestley Duality for Order-Preserving Maps into Distributive Lattices. Order 13 (1996), 6598.

  • [10]

    Fuchs, L., Beeton, B., and Czédli, G. Reminiscences about George Grätzer and E. Tamás Schmidt. Algebra Universalis 59 (2008), 310.

    • Search Google Scholar
    • Export Citation
  • [11]

    Grätzer, G. Lattice Theory: Foundation. Birkhäuser, Basel, Switzerland, 2011.

  • [12]

    Grätzer, G. and Lakser, H. The structure of pseudocomplemented distributive lattices. II: Congruence extension and amalgamation. Transactions of the American Mathematical Society 156 (1971), 343358.

    • Search Google Scholar
    • Export Citation
  • [13]

    Koubek, V. and Sichler, J. On Priestley duals of products. Cahiers de topologie et géométrie différentielle catégoriques 32 (1991), 243256.

    • Search Google Scholar
    • Export Citation
  • [14]

    Lakser, H. The structure of pseudocomplemented distributive lattices. I: Subdirect decomposition. Transactions of the American Mathematical Society 156 (1971), 335342.

    • Search Google Scholar
    • Export Citation
  • [15]

    Lee, K. B. Equational Classes of Distributive Pseudo-complemented Lattices. Canadian Journal of Mathematics 22 (1970), 881891.

  • [16]

    McKenzie, R. N., McNulty, G. F., and Taylor, W. F. Algebras, Lattices, Varieties: Volume I. Wadsworth & Brooks/Cole, Monterey, California, 1987.

    • Search Google Scholar
    • Export Citation
  • [17]

    Priestley, H. A. Representation of distributive lattices by means of ordered Stone spaces. Bulletin of the London Mathematical Society 2 (1970), 186190.

    • Search Google Scholar
    • Export Citation
  • [18]

    Priestley, H. A. Stone lattices: a topological approach. Fundamenta Mathematicae 84 (1974), 127143.

  • [19]

    Priestley, H. A. The Construction of Spaces Dual to Pseudocomplemented Distributive Lattices. Quarterly Journal of Mathematics 26 (1975), 215228.

    • Search Google Scholar
    • Export Citation
  • [20]

    Taylor, W. Residually Small Varieties. Algebra Universalis 2 (1972), 3353.

  • Collapse
  • Expand
The Instruction for Authors is available in PDF format. Please, download the file from HERE.
Please, download the LaTeX template from HERE.

Editor in Chief: László TÓTH (University of Pécs)

Honorary Editors in Chief:

  • † István GYŐRI (University of Pannonia, Veszprém)
  • János PINTZ (Rényi Institute of Mathematics)
  • Ferenc SCHIPP (Eötvös University Budapest and University of Pécs)
  • Sándor SZABÓ (University of Pécs)
     

Deputy Editors in Chief:

  • Erhard AICHINGER (JKU Linz)
  • Ferenc HARTUNG (University of Pannonia, Veszprém)
  • Ferenc WEISZ (Eötvös University, Budapest)

Editorial Board

  • Attila BÉRCZES (University of Debrecen)
  • István BERKES (Rényi Institute of Mathematics)
  • Károly BEZDEK (University of Calgary)
  • György DÓSA (University of Pannonia, Veszprém)
  • Balázs KIRÁLY – Managing Editor (University of Pécs)
  • Vedran KRCADINAC (University of Zagreb) 
  • Željka MILIN ŠIPUŠ (University of Zagreb)
  • Gábor NYUL (University of Debrecen)
  • Margit PAP (University of Pécs)
  • István PINK (University of Debrecen)
  • Mihály PITUK (University of Pannonia, Veszprém)
  • Jörg THUSWALDNER (Montanuniversität Leoben)
  • Zsolt TUZA (University of Pannonia, Veszprém)

Advisory Board

  • Szilárd RÉVÉSZ (Rényi Institute of Mathematics)  - Chair
  • Gabriella BÖHM
  • György GÁT (University of Debrecen)

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)