Grätzer and Lakser asked in the 1971 Transactions of the American Mathematical Society if the pseudocomplemented distributive lattices in the amalgamation class of the subvariety generated by 2n ⊕ 1 can be characterized by the property of not having a * homomorphism onto 2i ⊕ 1 for 1 < i < n.
In this article, this question is answered.
Adams, M. The Structure of Distributive Lattices, Ph.D. thesis, University of Bristol, Bristol, England, 1973.
Balbes, R. and Dwinger, P. Distributive Lattices (University of Missouri Press, Columbia, Missouri, 1974).
Bergman, C. Amalgamation classes of some distributive varieties. Algebra Universalis 20 (1985), 143–166.
Bergman, C., McKenzie, R., and Nagy, Zs. How to cancel a linearly ordered exponent. Colloquia Mathematica Societatis János Bolyai 29. Universal Algebra Esztergom (Hungary), 1977. (North-Holland, Amsterdam-New York, 1982), 87–93.
Cornish, W. H. Ordered topological spaces and the coproduct of bounded distributive lattices. Colloquium Mathematicum 36 (1976), 27–35.
Davey, B. A. and Priestley, H. A. Partition-induced natural dualities for varieties of pseudo-complemented distributive lattices. Discrete Mathematics 113 (1993), 41–58.
Davey, B. A. and Priestley, H. A. Introduction to Lattices and Order, second edition. Cambridge University Press, Cambridge, 2002.
Farley, J. D. The automorphism group of a function lattice: a problem of Jónsson and McKenzie. Algebra Universalis 36 (1996), 8–45.
Farley, J. D. Priestley Duality for Order-Preserving Maps into Distributive Lattices. Order 13 (1996), 65–98.
Fuchs, L., Beeton, B., and Czédli, G. Reminiscences about George Grätzer and E. Tamás Schmidt. Algebra Universalis 59 (2008), 3–10.
Grätzer, G. Lattice Theory: Foundation. Birkhäuser, Basel, Switzerland, 2011.
Grätzer, G. and Lakser, H. The structure of pseudocomplemented distributive lattices. II: Congruence extension and amalgamation. Transactions of the American Mathematical Society 156 (1971), 343–358.
Koubek, V. and Sichler, J. On Priestley duals of products. Cahiers de topologie et géométrie différentielle catégoriques 32 (1991), 243–256.
Lakser, H. The structure of pseudocomplemented distributive lattices. I: Subdirect decomposition. Transactions of the American Mathematical Society 156 (1971), 335–342.
Lee, K. B. Equational Classes of Distributive Pseudo-complemented Lattices. Canadian Journal of Mathematics 22 (1970), 881–891.
McKenzie, R. N., McNulty, G. F., and Taylor, W. F. Algebras, Lattices, Varieties: Volume I. Wadsworth & Brooks/Cole, Monterey, California, 1987.
Priestley, H. A. Representation of distributive lattices by means of ordered Stone spaces. Bulletin of the London Mathematical Society 2 (1970), 186–190.
Priestley, H. A. Stone lattices: a topological approach. Fundamenta Mathematicae 84 (1974), 127–143.
Priestley, H. A. The Construction of Spaces Dual to Pseudocomplemented Distributive Lattices. Quarterly Journal of Mathematics 26 (1975), 215–228.
Taylor, W. Residually Small Varieties. Algebra Universalis 2 (1972), 33–53.