Authors:
Shital H. Joshi Department of Mathematics, Shree M. P. Shah Arts and Science College, Surendranagar, 363001, Gujarat, India
Department of Mathematics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India

Search for other papers by Shital H. Joshi in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3809-3751
and
Ekta Shah Department of Mathematics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India

Search for other papers by Ekta Shah in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6372-985X
Open access

The aim of this paper is to study the interrelationship between various forms of (F, G)-shadowing property and represent it through the diagram. We show that asymptotic shadowing is equivalent to (ℕ0, F𝑐𝑓 )-shadowing property and that (ℕ0, F𝑐𝑓 )-shadowing implies (F𝑐𝑓 , F𝑐𝑓 )-shadowing. Necessary examples are discussed to support the diagram. We also give characterization for maps to have the (F, G)-shadowing property through the shift map on the inverse limit space. Further, we relate the (F, G)-shadowing property to the positively F𝑠-expansive map. Also, we obtain the necessary and sufficient condition for the identity map to have (ℕ0, F𝑡)-shadowing property.

  • [1]

    Aoki, N., and Hiraide, K. Topological theory of dynamical systems, vol. 52 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, 1994. Recent advances.

    • Search Google Scholar
    • Export Citation
  • [2]

    Brian, W. R., Meddaugh, J., and Raines, B. E. Chain transitivity and variations of the shadowing property. Ergodic Theory Dynam. Systems 35, 7 (2015), 20442052.

    • Search Google Scholar
    • Export Citation
  • [3]

    Chen, L., and Li, S. H. Shadowing property for inverse limit spaces. Proc. Amer. Math. Soc 115, 2 (1992), 573580.

  • [4]

    Darabi, A. A note on F𝑠-shadowing property. Topology Appl. 298 (2021), article no. 107710.

  • [5]

    Dastjerdi, A., Dawoud, and Hosseini, M. Shadowing with chain transitivity. Topology Appl 156, 13 (2009), 21932195.

  • [6]

    Dastjerdi, D. A., and Hosseini, M. Sub-shadowings. Nonlinear Anal 72, 9-10 (2010), 37593766.

  • [7]

    Fakhari, A., and Ghane, F. H. On shadowing: ordinary and ergodic. J. Math. Anal. Appl 364, 1 (2010), 151155.

  • [8]

    Joshi, S. H., and Shah, E. Stronger forms of expansive maps, preprint.

  • [9]

    Li, R. A note on shadowing with chain transitivity. Commun. Nonlinear Sci. Numer. Simul 17, 7 (2012), 28152823.

  • [10]

    Moothathu, T. K. S. Implications of pseudo-orbit tracing property for continuous maps on compacta. Topology Appl 158, 16 (2011), 22322239.

    • Search Google Scholar
    • Export Citation
  • [11]

    Oprocha, P. Shadowing, thick sets and the Ramsey property. Ergodic Theory Dynam. Systems 36, 5 (2016), 15821595.

  • Collapse
  • Expand

Editor in Chief: László TÓTH, University of Pécs, Pécs, Hungary

Honorary Editors in Chief:

  • János PINTZ, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • † Ferenc SCHIPP, Eötvös Loránd University, Budapest, Hungary and University of Pécs, Pécs, Hungary
  • Sándor SZABÓ, University of Pécs, Pécs, Hungary
     

Deputy Editors in Chief:

  • Erhard AICHINGER, JKU Linz, Linz, Austria
  • Ferenc HARTUNG, University of Pannonia, Veszprém, Hungary
  • Ferenc WEISZ, Eötvös Loránd University, Budapest, Hungary

Editorial Board

  • Attila BÉRCZES, University of Debrecen, Debrecen, Hungary
  • István BERKES, Rényi Institute of Mathematics, Budapest, Hungary
  • Károly BEZDEK, University of Calgary, Calgary, Canada
  • György DÓSA, University of Pannonia, Veszprém, Hungary
  • Balázs KIRÁLY – Managing Editor, University of Pécs, Pécs, Hungary
  • Vedran KRCADINAC, University of Zagreb, Zagreb, Croatia 
  • Željka MILIN ŠIPUŠ, University of Zagreb, Zagreb, Croatia
  • Gábor NYUL, University of Debrecen, Debrecen, Hungary
  • Margit PAP, University of Pécs, Pécs, Hungary
  • István PINK, University of Debrecen, Debrecen, Hungary
  • Mihály PITUK, University of Pannonia, Veszprém, Hungary
  • Lukas SPIEGELHOFER, Montanuniversität Leoben, Leoben, Austria
  • Andrea ŠVOB, University of Rijeka, Rijeka, Croatia
  • Csaba SZÁNTÓ, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Jörg THUSWALDNER, Montanuniversität Leoben, Leoben, Austria
  • Zsolt TUZA, University of Pannonia, Veszprém, Hungary

Advisory Board

  • Szilárd RÉVÉSZ – Chair, HUN-REN Alfréd Rényi Institute of Mathematics, Budapest, Hungary
  • Gabriella BÖHM
  • György GÁT, University of Debrecen, Debrecen, Hungary

University of Pécs,
Faculty of Sciences,
Institute of Mathematics and Informatics
Department of Mathematics
7624 Pécs, Ifjúság útja 6., HUNGARY
(36) 72-503-600 / 4179
ltoth@gamma.ttk.pte.hu

  • Mathematical Reviews
  • Zentralblatt
  • DOAJ

Publication Model Gold Open Access
Online only
Submission Fee none
Article Processing Charge 0 EUR/article (temporarily)
Subscription Information Gold Open Access

Mathematica Pannonica
Language English
Size A4
Year of
Foundation
1990
Volumes
per Year
1
Issues
per Year
2
Founder Akadémiai Kiadó
Founder's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 2786-0752 (Online)
ISSN 0865-2090 (Print)